With the development of technology, systems gravitate towards increasing in their complexity, miniaturization, and level of automation. Amongst these systems, ultrasonic devices have adhered to this trend of advancement. Ultrasonic systems require transducers to generate and sense ultrasonic signals. These transducers heavily impact the system’s performance. Advancements in microelectromechanical systems have led to the development of micromachined ultrasonic transducers (MUTs), which are utilized in miniaturized ultrasound systems. Piezoelectric micromachined ultrasonic transducers (PMUTs) exhibit higher capacitance and lower electrical impedance, which enhances the transducer’s sensitivity by minimizing the effect of parasitic capacitance and facilitating their integration with low-voltage electronics. PMUTs utilize high-yield batch microfabrication with the use of thin piezoelectric films. The deposition of thin piezoelectric material compatible with complementary metal-oxide semiconductors (CMOS) has opened novel avenues for the development of miniaturized compact systems with the same substrate for application and control electronics. PMUTs offer a wide variety of applications, including medical imaging, fingerprint sensing, range-finding, energy harvesting, and intrabody and underwater communication links. This paper reviews the current research and recent advancements on PMUTs and their applications. This paper investigates in detail the important transduction metrics and critical design parameters for high-performance PMUTs. Piezoelectric materials and microfabrication processes utilized to manufacture PMUTs are discussed. Promising PMUT applications and outlook on future advancements are presented.
Conventional sensor systems employ single-transduction technology where they respond to an input stimulus and transduce the measured parameter into a readable output signal. As such, the technology can only provide limited corresponding data of the detected parameters due to relying on a single transformed output signal for information acquisition. This limitation commonly results in the need for utilizing sensor array technology to detect targeted parameters in complex environments. Multi-transduction-mechanism technology, on the other hand, may combine more than one transduction mechanism into a single structure. By employing this technology, sensors can be designed to simultaneously distinguish between different input signals from complex environments for greater degrees of freedom. This allows a multi-parameter response, which results in an increased range of detection and improved signal-to-noise ratio. In addition, utilizing a multi-transduction-mechanism approach can achieve miniaturization by reducing the number of required sensors in an array, providing further miniaturization and enhanced performance. This paper introduces the concept of multi-transduction-mechanism technology by exploring different candidate combinations of fundamental transduction mechanisms such as piezoresistive, piezoelectric, triboelectric, capacitive, and inductive mechanisms.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers