SUMMARYThe Coarse Grained Reconfigurable Architectures (CGRAs) are proposed as new choices for enhancing the ability of parallel processing. Data transfer throughput between Reconfigurable Cell Array (RCA) and on-chip local memory is usually the main performance bottleneck of CGRAs. In order to release this stress, we propose a novel data transfer strategy that is called Heuristic Data Prefetch and Reuse (HDPR), for the first time in the case of explicit CGRAs. The HDPR strategy provides not only the flexible data access schedule but also the high data throughput needed to realize fast pipelined implementations of various loop kernels. To improve the data utilization efficiency, a dual-bank cache-like data reuse structure is proposed. Furthermore, a heuristic data prefetch is also introduced to decrease the data access latency. Experimental results demonstrate that when compared with conventional explicit data transfer strategies, our work achieves a significant speedup improvement of, on average, 1.73 times at the expense of only 5.86% increase in area.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers