Modification of a ZnO cathode by doping it with a hydroxyl-containing derivative - giving a ZnO-C60 cathode - provides a fullerene-derivative-rich surface and enhanced electron conduction. Inverted polymer solar cells with the ZnO-C60 cathode display markedly improved power conversion efficiency compared to those with a pristine ZnO cathode, especially when the active layer includes the low-bandgap polymer PTB7-Th.
We present high efficiency and stable inverted PSCs (i-PSC) by employing sol-gel processed simultaneously doped ZnO by Indium and fullerene derivative (BisNPC60-OH) (denoted as InZnO-BisC60) film as cathode interlayer and PTB7-Th:PC71BM as the active layer (where PTB7-Th is a low bandgap polymer we proposed previously). This dual-doped ZnO, InZnO-BisC60, film shows dual and opposite gradient dopant concentration profiles, being rich in fullerene derivative at the cathode surface in contact with active layer and rich in In at the cathode surface in contact with the ITO surface. Such doping in ZnO not only gives improved surface conductivity by a factor of 270 (from 0.015 to 4.06 S cm−1) but also provides enhanced electron mobility by a factor of 132 (from 8.25*10−5 to 1.09*10−2 cm2 V−1 s−1). The resulting i-PSC exhibits the improved PCE 10.31% relative to that with ZnO without doping 8.25%. This PCE 10.31% is the best result among the reported values so far for single junction PSC.
We present a novel electron transport (ET) polymer composed of polyfluorene grafted with a K(+)-intercalated crown ether involving six oxygen atoms (PFCn6:K(+)) for bulk-heterojunction polymer solar cells (PSCs) with regioregular poly(3-hexylthiophene) (P3HT) as the donor and indene-C(60) bisadduct (ICBA) or indene-[6,6]-phenyl-C(61)-butyric acid methyl ester (IPCBM) as the acceptor in the active layer and with Al or Ca/Al as the cathode. A remarkable improvement in the power conversion efficiency (PCE) (measured in air) was observed upon insertion of this ET layer, which increased the PCE from 5.78 to 7.5% for a PSC with ICBA and Ca/Al (5.53 to 6.63% with IPCBM) and from 3.87 to 6.88% for a PSC with ICBA and Al (3.06 to 6.21% with IPCBM). This ET layer provides multiple functionalities: (1) it generates an optical interference effect for redistribution of light intensity as an optical spacer; (2) it blocks electron-hole recombination at the interface with the cathode; (3) it forms an interfacial dipole that promotes the vacuum level of the cathode metal; and (4) it enhances electron conduction, as evidenced by (1) the increase in total absorption of 1:1 w/w P3HT:ICBA by a factor of 1.3; (2) the reduction in the hole-only current density profile by a factor of 3.3 at 2.0 × 10(5) V/cm; (3) the decrease of 0.81 eV in the work function of Al from 4.28 to 3.47 eV, as determined by UV photoelectron spectroscopy; and (4) the decrease in the series resistance of PSCs with ICBA and Al by a factor of 4.5, as determined by the current-voltage characteristic under dark conditions; respectively. The PSC of 7.5% is the highest among the reported values for PSC systems with the simplest donor polymer, P3HT.
The Soret absorption band has been utilized as a probe for the adsorption of cytochrome c to the surface of
a fused silica prism in direct contact with bulk protein solutions of various concentrations and pH. Employing
linear polarized light and a single-pass total internal reflection absorption technique, we examined in detail
the adsorption isotherm, molecular orientation, packing density, and conformational change of the protein
bound to the bare (hydrophilic) and silanized (hydrophobic) glass surfaces. An adsorbate density of Γ = 1.4
× 1013 molecules/cm2 was determined for the hydrophilic substrate at pH 7.2 and C
b = 110 μM, indicating
that the protein molecules are essentially closely packed on the surface at saturation. The packing density is
sensitive to the solution pH as well as the surface hydrophobicity, a result that the protein−surface interaction
is governed by both electrostatic and hydrophobic forces. The same forces also govern the molecular orientation,
yielding an angle of θμ = 41° between the heme plane and the surface normal at neutral pH. The angle is
retained over a wide pH range (4−9) and is fairly independent of the surface coverage on both the hydrophilic
and hydrophobic substrates. Reorientation of the protein occurs (41° → 20°) at pH ≈ 3, when the cyt c
unfolds and the hydrophobic force becomes dominant in the adsorption process.
In the past few years, tremendous progress in power conversion efficiency (PCE) of polymer solar cell (PSC) via design of novel conjugated polymers has been made. In order to further promote PCE, an efficient way is to narrow down optical band gap of the polymers. This review focuses on low band gap polymers based on Donor—Acceptor (D—A) strategy and quinoid form structure. At first, we introduce the requirements for polymers, such as tuning of energy levels. Second, we introduce the importance of main chain, side chain and substituents, which affect the optical and electrical properties, intra/intermolecular interactions, and charge mobility. We survey the important donor and acceptor units and discuss the guidelines for developing highly efficient conjugated polymers. We classify the polymers into several categories in accordance with the structures of acceptor units: Benzodiathiazole (BT), Thienopyrrolodione (TPD) and Diketopyrrolopyrrole (DPP), to which the copolymers with various donors have promissing efficiency. Low band gap polymers based on the quinoid structure, thienothiophene (TT), having promising efficiency are also included.
We present a novel idea for overcoming the drawback of poor contact between the ZnO cathode and active layer interface in an inverted polymer solar cell (i-PSC), simply by incorporating an electron-acceptor self-assembled monolayer (SAM)--tetrafluoroterephthalic acid (TFTPA)--on the ZnO cathode surface to create an electron-poor surface of TFTPA on ZnO. The TFTPA molecules on ZnO are anchored on the ZnO surface by reacting its carboxyl groups with hydroxyl groups on the ZnO surface, such that the tetrafluoroterephthalate moieties lay on the surface with plane-on electron-poor benzene rings acting as positive charge centers. Upon coating a layer of fullerenes on top of it, the fullerene molecules can be physically adsorbed by Coulombic interaction and facilitate a promoted electron collection from the bulk. The active layer is composed of the mid bandgap polymer poly(3-hexylthiophene) (P3HT) or low bandgap polymer, poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), as the donor and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor. Significant enhancement in power conversion efficiency (PCE) was observed for the devices with the active layer P3HT:PC61BM (or PC71BM) by promoting from 3.20 to 4.03% (or from 3.27 to 4.04%) and with the active layer PTB7:PC71BM from 6.03 to 6.90%. This method should be also applicable to other types of active layer.
A series of novel electron transport (ET) polymers composed of different conjugated main chains (fluorene, thiophene, and 2,7‐carbazole) and crown ether side chain (crown ether, aza‐crown ether and amine) is presented for bulk‐heterojunction polymer solar cells with poly(3‐hexylthiophene) (P3HT) or poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo [1,2‐b:4,5‐b′] dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]](PTB7) as the active polymer and aluminum metal as the cathode. Unexpectedly, it is found that the main chain of ET polymers has a greater effect on the interfacial dipole than the side chain, even when attaching a high polarity group. The electron‐rich bridge atom of the main chain may also contribute appreciably to the interfacial dipole. When used as the ET layer, all of these polymers can generate an optical interference effect for redistribution of the optical electric field as an optical spacer and, therefore, allow more light to be absorbed by the active layer, thus leading to an increase in short‐circuit current density. They can also block hole diffusion to the cathode and prevent electron–hole recombination during the ET process. Among the five ET polymers investigated, PCCn6 is the most effective one, providing a remarkable improvement in the power conversion efficiency (measured in air) of the device to 8.13% compared to 5.20% for PTB7:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.