V.Schacht and M.I.Ramirez contributed equally to this workWithin the vascular system, the mucin-type transmembrane glycoprotein T1a/podoplanin is predominantly expressed by lymphatic endothelium, and recent studies have shown that it is regulated by the lymphatic-speci®c homeobox gene Prox1. In this study, we examined the role of T1a/podoplanin in vascular development and the effects of gene disruption in mice. T1a/podoplanin is ®rst expressed at around E11.0 in Prox1-positive lymphatic progenitor cells, with predominant localization in the luminal plasma membrane of lymphatic endothelial cells during later development. T1a/podoplanin ±/± mice die at birth due to respiratory failure and have defects in lymphatic, but not blood vessel pattern formation. These defects are associated with diminished lymphatic transport, congenital lymphedema and dilation of lymphatic vessels. T1a/podoplanin is also expressed in the basal epidermis of newborn wild-type mice, but gene disruption did not alter epidermal differentiation. Studies in cultured endothelial cells indicate that T1a/podoplanin promotes cell adhesion, migration and tube formation, whereas small interfering RNA-mediated inhibition of T1a/podoplanin expression decreased lymphatic endothelial cell adhesion. These data identify T1a/podoplanin as a novel critical player that regulates different key aspects of lymphatic vasculature formation.
Early during development, one of the first indications that lymphangiogenesis has begun is the polarized expression of the homeobox gene Prox1 in a subpopulation of venous endothelial cells. It has been shown previously that Prox1 expression in the cardinal vein promotes and maintains the budding of endothelial cells that will form the lymphatic vascular system. Prox1-deficient mice are devoid of lymphatic vasculature, and in these animals endothelial cells fail to acquire the lymphatic phenotype; instead, they remain as blood vascular endothelium. To investigate whether Prox1 is sufficient to induce a lymphatic fate in blood vascular endothelium, Prox1 cDNA was ectopically expressed by adenoviral gene transfer in primary human blood vascular endothelial cells and by transient plasmid cDNA transfection in immortalized microvascular endothelial cells. Transcriptional profiling combined with quantitative real-time reverse transcriptionpolymerase chain reaction and Western blotting analyses revealed that Prox1 expression up-regulated the lymphatic endothelial cell markers podoplanin and vascular endothelial growth factor receptor-3. Conversely, genes such as laminin, vascular endothelial growth factor-C, neuropilin-1, and intercellular adhesion molecule-1, whose expression has been associated with the blood vascular endothelial cell phenotype, were down-regulated. These results were confirmed by the use of specific antibodies against some of these markers in sections of embryonic and adult tissues. These findings validate our previous proposal that Prox1 is a key player in the molecular pathway leading to the formation of lymphatic vasculature and identify Prox1 as a master switch in the program specifying lymphatic endothelial cell fate. That a single gene product was sufficient to re-program the blood vascular endothelium toward a lymphatic phenotype corroborates the close relationship between these two vascular systems and also suggests that during evolution, the lymphatic vasculature originated from the blood vasculature by the additional expression of only a few gene products such as Prox1.
Vascular endothelial growth factor-A (VEGF-A) expression is up-regulated in several inflammatory diseases including psoriasis, delayed-type hypersensitivity (DTH) reactions, and rheumatoid arthritis. To directly characterize the biologic function of VEGF-A in inflammation, we evaluated experimental DTH reactions induced in the ear skin of transgenic mice that overexpress VEGF-A specifically in the epidermis. VEGF-A transgenic mice underwent a significantly increased inflammatory response that persisted for more than 1 month, whereas inflammation returned to baseline levels within 7 days in wild-type mice. Inflammatory lesions in VEGF-A transgenic mice closely resembled human psoriasis and were characterized by epidermal hyperplasia, impaired epidermal differentiation, and accumulation of dermal CD4 ؉ T-lymphocytes and epidermal CD8 ؉ lymphocytes. Surprisingly, VEGF-A also promoted lymphatic vessel proliferation and enlargement, which might contribute to the increased inflammatory response, as lymphatic vessel enlargement was also detected in human psoriatic skin lesions. Combined systemic treatment with blocking antibodies against VEGF receptor-1 (VEGFR-1) and VEGFR-2 potently inhibited inflammation and also decreased lymphatic vessel size. Together, these findings reveal a central role of VEGF-A in promoting lymphatic enlargement, vascular hyperpermeability, and leukocyte recruitment, thereby leading to persistent chronic inflammation. They also indicate that inhibition of VEGF-A bioactivity might be a new approach to anti-inflammatory therapy. IntroductionVascular endothelial growth factor-A (VEGF-A) is a homodimeric heparin-binding glycoprotein that occurs in at least 4 isoforms of 121, 165, 189, and 201 amino acids, as a result of alternative splicing (corresponding murine proteins are one amino acid shorter). VEGF-A binds to the 2 type III receptor tyrosine kinases VEGF receptor-1 (VEGFR-1, Flt-1) and VEGFR-2 (KDR or Flk-1), which are primarily expressed by vascular endothelial cells. 1,2 VEGF-A165 also binds to the nonkinase receptors neuropilin 1 and 2. 3 VEGF-A stimulates endothelial cell migration, proliferation, and survival in vitro and promotes microvascular permeability and angiogenesis in vivo. 4,5 Previous studies have revealed that VEGF-A expression by epidermal keratinocytes and endothelial expression of VEGF receptors are up-regulated in several inflammatory conditions including psoriasis, 6 delayed-type hypersensitivity reactions, 7 and bullous diseases. 8 However, the biologic importance of VEGF in the pathogenesis of chronic inflammation has remained unclear.The lymphatic vascular system is composed of a network of thin-walled capillaries that drain protein-rich lymph from the extracellular space and thereby maintain normal tissue pressure. 9 Moreover, lymphatic vessels play an important role in the afferent phase of the immune response. 10 Little is known about the role of the lymphatic vascular system in the control of chronic inflammation, however, due to a lack of reliable markers and t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.