BackgroundIt is widely recognized that the prevalence of obesity and comorbidities including prediabetes and type 2 diabetes continue to increase worldwide. Results from a 24-week Diabetes Prevention Program (DPP) fully mobile pilot intervention were previously published showing promising evidence of the usefulness of DPP-based eHealth interventions on weight loss.ObjectiveThis pilot study extends previous findings to evaluate weight loss results of core (up to week 16) and maintenance (postcore weeks) DPP interventions at 65 weeks from baseline.MethodsOriginally, 140 participants were invited and 43 overweight or obese adult participants with a diagnosis of prediabetes signed up to receive a 24-week virtual DPP with human coaching through a mobile platform. At 65 weeks, this pilot study evaluates weight loss and engagement in maintenance participants by means of repeated measures analysis of variances and backward multiple linear regression to examine predictors of weight loss. Last observation carried forward was used for endpoint measurements.ResultsAt 65 weeks, mean weight loss was 6.15% in starters who read 1 or more lessons per week on 4 or more core weeks, 7.36% in completers who read 9 or more lessons per week on core weeks, and 8.98% in maintenance completers who did any action in postcore weeks (all P<.001). Participants were highly engaged, with 80% (47/59) of the sample completing 9 lessons or more and 69% (32/47) of those completing the maintenance phase. In-app actions related to self-monitoring significantly predicted weight loss.ConclusionsIn comparison to eHealth programs, this pilot study shows that a fully mobile DPP can produce transformative weight loss. A fully mobile DPP intervention resulted in significant weight loss and high engagement during the maintenance phase, providing evidence for long-term potential as an alternative to in-person DPP by removing many of the barriers associated with in-person and other forms of virtual DPP.
This advanced smartphone app was a useful tool to maintain weight loss in overweight or obese people.
Background Developing effective, widely useful, weight management programs is a priority in health care because obesity is a major health problem. Objective This study developed and investigated a new, comprehensive, multifactorial, daily, intensive, psychologist coaching program based on cognitive behavioral therapy (CBT) modules. The program was delivered via the digital health care mobile services Noom Coach and InBody. Methods This was an open-label, active-comparator, randomized controlled trial. A total of 70 female participants with BMI scores above 24 kg/m2 and no clinical problems besides obesity were randomized into experimental and control groups. The experimental (ie, digital CBT) group (n=45) was connected with a therapist intervention using a digital health care service that provided daily feedback and assignments for 8 weeks. The control group (n=25) also used the digital health care service, but practiced self-care without therapist intervention. The main outcomes of this study were measured objectively at baseline, 8 weeks, and 24 weeks and included weight (kg) as well as other body compositions. Differences between groups were evaluated using independent t tests and a per-protocol framework. Results Mean weight loss at 8 weeks in the digital CBT group was significantly higher than in the control group (–3.1%, SD 4.5, vs –0.7%, SD 3.4, P=.04). Additionally, the proportion of subjects who attained conventional 5% weight loss from baseline in the digital CBT group was significantly higher than in the control group at 8 weeks (32% [12/38] vs 4% [1/21], P=.02) but not at 24 weeks. Mean fat mass reduction in the digital CBT group at 8 weeks was also significantly greater than in the control group (–6.3%, SD 8.8, vs –0.8%, SD 8.1, P=.02). Mean leptin and insulin resistance in the digital CBT group at 8 weeks was significantly reduced compared to the control group (–15.8%, SD 29.9, vs 7.2%, SD 35.9, P=.01; and –7.1%, SD 35.1, vs 14.4%, SD 41.2, P=.04). Emotional eating behavior (ie, mean score) measured by questionnaire (ie, the Dutch Eating Behavior Questionnaire) at 8 weeks was significantly improved compared to the control group (–2.8%, SD 34.4, vs 21.6%, SD 56.9, P=.048). Mean snack calorie intake in the digital CBT group during the intervention period was significantly lower than in the control group (135.9 kcal, SD 86.4, vs 208.2 kcal, SD 166.3, P=.02). Lastly, baseline depression, anxiety, and self-esteem levels significantly predicted long-term clinical outcomes (24 weeks), while baseline motivation significantly predicted both short-term (8 weeks) and long-term clinical outcomes. Conclusions These findings confirm that technology-based interventions should be multidimensional and are most effective with human feedback and support. This study is innovative in successfully developing and verifying the effects of a new CBT approach with a multidisciplinary team based on digital technologies rather than standalone technology-based interventions. Trial Registration ClinicalTrials.gov NCT03465306; https://clinicaltrials.gov/ct2/show/NCT03465306
' 'comfortable,' 'characteristic,' 'light' and 'simple.' 2)
Background Weight loss interventions using mobile phone apps have recently shown promising results. Objective This study aimed to analyze the short-term weight loss effect of a mobile coaching intervention when it is integrated with a local public health care center and a regional hospital’s antiobesity clinic as a multidisciplinary model. Methods A total of 150 overweight or obese adults signed up to complete an 8-week antiobesity intervention program with human coaching through a mobile platform. Paired t tests and multiple linear regression analysis were used to identify the intervention factors related to weight change. Results Among the 150 participants enrolled in this study, 112 completed the 8-week weight loss intervention. Weight (baseline: mean 77.5 kg, SD 12.9; after intervention: mean 74.8 kg, SD 12.6; mean difference −2.73 kg), body mass index, waist circumference, fat mass (baseline: mean 28.3 kg, SD 6.6; after intervention: mean 25.7 kg, SD 6.3; mean difference −2.65 kg), and fat percentage all showed a statistically significant decrease, and metabolic equivalent of task (MET) showed a statistically significant increase after intervention. In multiple linear regression analysis, age (beta=.07; P=.06), △MET (beta=−.0009; P=.10), number of articles read (beta=−.01; P=.04), and frequency of weight records (beta=−.05; P=.10; R2=0.4843) were identified as significant factors of weight change. Moreover, age (beta=.06; P=.03), sex (female; beta=1.16; P=.08), △MET (beta=−.0009; P<.001), and number of articles read (beta=−.02; P<.001; R2=0.3728) were identified as significant variables of fat mass change. Conclusions The multidisciplinary approach, combining a mobile health (mHealth) care app by health care providers, was effective for short-term weight loss. Additional studies are needed to evaluate the efficacy of mHealth care apps in obesity treatment.
Background Metabolic syndrome (MetS) is a known predictor of diabetes mellitus (DM), but whether longitudinal changes in MetS status modify the risk for DM remains unclear. We investigated whether changes in MetS status over 2 years modify the 10-year risk of incident DM. Methods We analyzed data from 7,317 participants aged 40 to 70 years without DM at baseline, who took part in 2001 to 2011 Korean Genome Epidemiology Study. Subjects were categorized into four groups based on repeated longitudinal assessment of MetS status over 2 years: non-MetS, resolved MetS, incident MetS, and persistent MetS. The hazard ratio (HR) of new-onset DM during 10 years was calculated in each group using Cox models. Results During the 10-year follow-up, 1,099 participants (15.0%) developed DM. Compared to the non-MetS group, the fully adjusted HRs for new-onset DM were 1.28 (95% confidence interval [CI], 0.92 to 1.79) in the resolved MetS group, 1.75 (95% CI, 1.30 to 2.37) in the incident MetS group, and 1.98 (95% CI, 1.50 to 2.61) in the persistent MetS group ( P for trend <0.001). The risk of DM in subjects with resolved MetS was significantly attenuated compared to those with persistent MetS over 2 years. In addition, the adjusted HR for 10-year developing DM gradually increased as the number of MetS components increased 2 years later. Conclusion We found that discrete longitudinal changes pattern in MetS status over 2 years associated with 10-year risk of DM. These findings suggest that monitoring change of MetS status and controlling it in individuals may be important for risk prediction of DM.
Background Excessive muscle loss is an important prognostic factor in esophageal cancer patients undergoing neoadjuvant chemoradiotherapy (NACRT), as reported in our previous research. Objective In this pilot study, we prospectively tested the feasibility of a health coaching mobile app for preventing malnutrition and muscle loss in this patient population. Methods Between July 2019 and May 2020, we enrolled 38 male patients with esophageal cancer scheduled for NACRT. For 8 weeks from the start of radiotherapy (RT), the patients used Noom, a health coaching mobile app that interactively provided online advice about food intake, exercise, and weight changes. The skeletal muscle index (SMI) measured based on computed tomography and nutrition-related laboratory markers were assessed before and after RT. We evaluated the changes in the SMI, nutrition, and inflammatory factors between the patient group that used the mobile app (mHealth group) and our previous study cohort (usual care group). Additionally, we analyzed the factors associated with walk steps recorded in the app. Results Two patients dropped out of the study (no app usage; treatment changed to a definitive aim). The use (or activation) of the app was noted in approximately 70% (25/36) of the patients until the end of the trial. Compared to the 1:2 matched usual care group by propensity scores balanced with their age, primary tumor location, tumor stage, pre-RT BMI, and pre-RT SMI level, 30 operable patients showed less aggravation of the prognostic nutritional index (PNI) (–6.7 vs –9.8; P=.04). However, there was no significant difference in the SMI change or the number of patients with excessive muscle loss (∆SMI/50 days >10%). In patients with excessive muscle loss, the walk steps significantly decreased in the last 4 weeks compared to those in the first 4 weeks. Age affected the absolute number of walk steps (P=.01), whereas pre-RT sarcopenia was related to the recovery of the reduced walk steps (P=.03). Conclusions For esophageal cancer patients receiving NACRT, a health care mobile app helped nutritional self-care with less decrease in the PNI, although it did not prevent excessive muscle loss. An individualized care model with proper exercise as well as nutritional support may be required to reduce muscle loss and malnutrition.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers