Powdery mildew (Blumeria graminis f. sp. tritici) results in serious economic loss in wheat production. Exploration of plant resistance to wheat powdery mildew over several decades has led to the discovery of a wealth of resistance genes and quantitative trait loci (QTLs). We have provided a comprehensive summary of over 200 powdery mildew genes (permanently and temporarily designated genes) and QTLs reported in common bread wheat. This highlights the diverse and rich resistance sources that exist across all 21 chromosomes. To manage different data for breeders, here we also present a bridged mapping result from previously reported powdery mildew resistance genes and QTLs with the application of a published integrated wheat map. This will provide important insights to empower further breeding of powdery mildew resistant wheat via marker‐assisted selection (MAS).
Durum wheat (Triticum turgidum L. ssp. Durum) is largely grown in rainfed production systems around the world. New cultivars with improved adaptation to water-limited environments are required to sustain productivity in the face of climate change. Physiological traits related to canopy development underpin the production of biomass and yield, as they interact with solar radiation and affect the timing of water use throughout the growing season. Despite their importance, there is limited research on the relationship between canopy development and yield in durum wheat, in particular studies exploring temporal canopy dynamics under field conditions. This study reports the genetic dissection of canopy development in a durum wheat nested-association mapping population evaluated for longitudinal normalized difference vegetation index (NDVI) measurements. Association mapping was performed to identify quantitative trait loci (QTL) for time-point NDVI and spline-smoothed NDVI trajectory traits. Yield effects associated with QTL for canopy development were explored using data from four rainfed field trials. Four QTL were associated with yield in specific environments, and notably, were not associated with a yield penalty in any environment. Alleles associated with slow canopy closure increased yield. This was likely due to a combined effect of optimised timing of water-use and pleiotropic effects on yield component traits, including spike number and spike length. Overall, this study suggests that slower canopy closure is beneficial for durum wheat production in rainfed environments. Selection for traits or loci associated with canopy development may indirectly improve yield and support selection for more resilient and productive cultivars in water limited environments.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.