Rice is one of the most important food crops in the world, and amino acids in rice grains are major nutrition sources for the people in countries where rice is the staple food. Phytohormones and plant growth regulators play vital roles in regulating the biosynthesis of amino acids in plants. This paper reviewed the content and compositions of amino acids and their distribution in different parts of ripe rice grains, and the biosynthesis and metabolism of amino acids and their regulation by polyamines (PAs) and phytohormones in filling grains, with a focus on the roles of higher PAs (spermidine and spermine), ethylene, and brassinosteroids (BRs) in this regulation. Recent studies have shown that higher PAs and BRs (24-epibrassinolide and 28-homobrassinolide) play positive roles in mediating the biosynthesis of amino acids in rice grains, mainly by enhancing the activities of the enzymes involved in amino acid biosynthesis and sucrose-to-starch conversion and maintaining redox homeostasis. In contrast, ethylene may impede amino acid biosynthesis by inhibiting the activities of the enzymes involved in amino acid biosynthesis and elevating reactive oxygen species. Further research is needed to unravel the temporal and spatial distribution characteristics of the content and compositions of amino acids in the filling grain and their relationship with the content and compositions of amino acids in different parts of a ripe grain, to elucidate the cross-talk between or among phytohormones in mediating the anabolism of amino acids, and to establish the regulation techniques for promoting the biosynthesis of amino acids in rice grains.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers