The use of networks for communications between the electronic control units (ECU) of a vehicle in production cars dates from the beginning of the 1990s. The specific requirements of the different car domains have led to the development of a large number of automotive networks such as Local Interconnect Network, J1850, CAN, TTP/C, FlexRay, media-oriented system transport, IDB1394, etc. This paper first introduces the context of in-vehicle embedded systems and, in particular, the requirements imposed on the communication systems. Then, a comprehensive review of the most widely used automotive networks, as well as the emerging ones, is given. Next, the current efforts of the automotive industry on middleware technologies, which may be of great help in mastering the heterogeneity, are reviewed. Finally, we highlight future trends in the development of automotive communication systems.
Real-time wireless sensor networks are becoming more and more important by the requirement of message delivery timeliness in emerging new applications. Supporting real-time QoS in sensor networks faces severe challenges due to the wireless nature, limited resource, low node reliability, distributed architecture and dynamic network topology. There are tradeoffs between different application requirements including energy efficiency and delay performance. This paper studies the state of the art of current real-time solutions including MAC protocols, routing protocols, data processing strategies and cross-layer designs. Some research challenges and future design favors are also identified and discussed.
2015): Nonlinear modelling of high-speed catenary based on analytical expressions of cable and truss elements, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility,Due to the intrinsic nonlinear characteristics and complex structure of the high-speed catenary system, a modelling method is proposed based on the analytical expressions of nonlinear cable and truss elements. The calculation procedure for solving the initial equilibrium state is proposed based on the Newton-Raphson iteration method. The deformed configuration of the catenary system as well as the initial length of each wire can be calculated. Its accuracy and validity of computing the initial equilibrium state are verified by comparison with the separate model method, absolute nodal coordinate formulation and other methods in the previous literatures. Then, the proposed model is combined with a lumped pantograph model and a dynamic simulation procedure is proposed. The accuracy is guaranteed by the multiple iterative calculations in each time step. The dynamic performance of the proposed model is validated by comparison with EN 50318, the results of the finite element method software and SIEMENS simulation report, respectively. At last, the influence of the catenary design parameters (such as the reserved sag and pre-tension) on the dynamic performance is preliminarily analysed by using the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.