The incidence of cutaneous malignant melanoma is increasing at a greater rate than that of any other cancer in the world. However, an effective therapy for malignant melanoma has not been established. Recently, some studies have shown an antitumor effect of non-equilibrium atmospheric pressure plasmas (NEAPPs) in vitro. Here, we examined the in vivo effect of NEAPP on cell cycle regulators, key elements for malignant transformation, in spontaneously developed benign melanocytic tumors in a hairless animal model. NEAPP irradiation decreased expression levels of cell cycle promoters, Cyclin D1, E1 and E2, and increased expression level of a cell cycle repressor, p27 KIP1 .Cyclin D1, E1 and E2 and p27 KIP expression levels were associated with malignant transformation of the benign tumor in the animal model. Our results suggest that NEAPP irradiation suppresses malignant transformation of a benign melanocytic tumor via control of the expression levels of cell cycle regulators.
There is no information on the association between oral exposure to arsenic (As) and hearing loss in humans or mice. In this combined epidemiological study and experimental study, the association of oral exposure to As with hearing loss in people aged 12–29 years and young mice was examined. Subjects in the exposure group (n = 48), who were drinking tube well water contaminated with As, showed significantly higher risks of hearing loss at 4 kHz [odds ratio (OR) = 7.60; 95% confidence interval (CI): 1.56, 57.88], 8 kHz (OR = 5.00; 95% CI: 1.48, 18.90) and 12 kHz (OR = 8.72; 95% CI: 2.09, 47.77) than did subjects in the control group (n = 29). We next performed an experiment in which young mice were exposed to As via drinking water at 22.5 mg/L, which is a much greater concentration than that in human studies. The exposure group showed hearing loss and accumulation of As in inner ears. Ex vivo exposure of the organ of Corti from mice exposed to As significantly decreased the number of auditory neurons and fibers. Thus, our combined study showed that oral exposure to As caused hearing loss in young people and young mice.
Increasing evidence indicates that defects in the sensory system are highly correlated with age-related neurodegenerative diseases, including Alzheimer's disease (AD). This raises the possibility that sensory cells possess some commonalities with neurons and may provide a tool for studying AD. The sensory system, especially the auditory system, has the advantage that depression in function over time can easily be measured with electrophysiological methods. To establish a new mouse AD model that takes advantage of this benefit, we produced transgenic mice expressing amyloid-β (Aβ), a causative element for AD, in their auditory hair cells. Electrophysiological assessment indicated that these mice had hearing impairment, specifically in high-frequency sound perception (>32 kHz), at 4 months after birth. Furthermore, loss of hair cells in the basal region of the cochlea, which is known to be associated with age-related hearing loss, appeared to be involved in this hearing defect. Interestingly, overexpression of human microtubule-associated protein tau, another factor in AD development, synergistically enhanced the Aβ-induced hearing defects. These results suggest that our new system reflects some, if not all, aspects of AD progression and, therefore, could complement the traditional AD mouse model to monitor Aβ-induced neuronal dysfunction quantitatively over time.
Bone morphogenetic proteins (BMPs) are known to play roles in inner ear development of higher vertebrates. In zebrafish, there are several reports showing that members of the BMP family are expressed in the otic vesicle. We have isolated a novel zebrafish mutant gallery, which affects the development of the semicircular canal. Gallery merely forms the lateral and the immature anterior protrusion, and does not form posterior and ventral protrusions. We found that the expression of bmp2b and bmp4, both expressed in the normal optic vesicle at the protrusion stage, are extremely upregulated in the otic vesicle of gallery. To elucidate the role of BMPs in the development of the inner ear of zebrafish, we have applied excess BMP to the wild-type otic vesicle. The formation of protrusions was severely affected, and in some cases, they were completely lost in BMP4-treated embryos. Furthermore, the protrusions in gallery treated with Noggin were partially rescued. These data indicate that BMP4 plays an important role in the development of protrusions to form semicircular canals.
Methylene blue (MB) inhibits the aggregation of tau, a main constituent of neurofibrillary tangles. However, MB’s mode of action in vivo is not fully understood. MB treatment reduced the amount of sarkosyl-insoluble tau in Drosophila that express human wild-type tau. MB concurrently ameliorated the climbing deficits of transgenic tau flies to a limited extent and diminished the climbing activity of wild-type flies. MB also decreased the survival rate of wild-type flies. Based on its photosensitive efficacies, we surmised that singlet oxygen generated through MB under light might contribute to both the beneficial and toxic effects of MB in vivo. We identified rose bengal (RB) that suppressed tau accumulation and ameliorated the behavioral deficits to a lesser extent than MB. Unlike MB, RB did not reduce the survival rate of flies. Our findings indicate that singlet oxygen generators with little toxicity may be suitable drug candidates for treating tauopathies.
Due to the increased ultraviolet radiation, the incidence of melanoma is increasing worldwide more than that of any other cancer. In this study, the effects of irradiation of non-thermal atmospheric pressure plasmas (NEAPPs) on benign melanocytic tumors from our original hairless model mice (HL-RET-mice), in which benign melanocytic tumors and melanomas spontaneously develop in the skin stepwise, were examined. Expression levels of melanoma cell adhesion molecule (MCAM) and matrix metalloproteinase-2 (MMP-2) mRNA in melanomas were higher than those in benign melanocytic tumors in the mice. Repeated irradiation of non-thermal atmospheric pressure plasmas (NEAPPs) for the benign tumors decreased the expression levels of MCAM and MMP-2 mRNA in the tumors from the mice. Previous studies showed that MCAM sites are upstream of MMP-2, that MCAM regulates transcription of MMP-2 in melanoma cells and that MMP-2 is associated with the conversion of a benign tumor to a malignant tumor. Therefore, our results suggest that the NEAPP irradiation-mediated decrease in the expression level of MMP-2 in benign melanocytic tumors is associated with decreased expression levels of MCAM. Moreover, NEAPP irradiation might be a potential candidate for therapy to prevent melanoma development through suppression of malignant conversion in benign melanocytic tumors.
Various cancers including skin cancer are increasing in 45 million people exposed to arsenic above the World Health Organization's guideline value of 10 μg l(-1). However, there is limited information on key molecules regulating arsenic-mediated carcinogenesis. Our fieldwork in Bangladesh demonstrated that levels of placental growth factor (PlGF) in urine samples from residents of cancer-prone areas with arsenic-polluted drinking water were higher than those in urine samples from residents of an area that was not polluted with arsenic. Our experimental study in human nontumorigenic HaCaT skin keratinocytes showed that arsenite promoted anchorage-independent growth with increased expression and secretion of PlGF, a ligand of vascular endothelial growth factor receptor1 (VEGFR1), and increased VEGFR1/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) activities. The arsenite-mediated promotion of anchorage-independent growth was strongly inhibited by PlGF depletion with decreased activities of the PlGF/VEGFR1/MEK/ERK pathway. Moreover, arsenite proteasome-dependently degrades metal-regulatory transcription factor-1 (MTF-1) protein, resulting in a decreased amount of MTF-1 protein binding to the PlGF promoter. MTF-1 negatively controlled PlGF transcription in HaCaT cells, resulting in increased PlGF transcription. These results suggest that arsenite-mediated MTF-1 degradation enhances the activity of PlGF/VEGFR1/MEK/ERK signaling, resulting in promotion of the malignant transformation of keratinocytes. Thus, this study proposed a molecular mechanism for arsenite-mediated development of skin cancer.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.