BackgroundMounting evidence indicates that obesity may be associated with the risk of colorectal cancer (CRC). To conduct a systematic review of prospective studies assessing the association of obesity with the risk of CRC using meta-analysis.Methodology/Principal FindingsRelevant studies were identified by a search of MEDLINE and EMBASE databases before January 2012, with no restrictions. We also reviewed reference lists from retrieved articles. We included prospective studies that reported relative risk (RR) estimates with 95% confidence intervals (CIs) for the association between general obesity [measured using body mass index (BMI)] or central obesity [measured using waist circumference (WC)] and the risk of colorectal, colon, or rectal cancer. Approximately 9, 000, 000 participants from several countries were included in this analysis. 41 studies on general obesity and 13 studies on central obesity were included in the meta-analysis. The pooled RRs of CRC for the obese vs. normal category of BMI were 1.334 (95% CI, 1.253–1.420), and the highest vs. lowest category of WC were 1.455 (95% CI, 1.327–1.596). There was heterogeneity among studies of BMI (P<0.001) but not among studies of WC (P = 0.323).ConclusionsBoth of general and central obesity were positively associated with the risk of CRC in this meta-analysis.
Objective To use genetic variants as unconfounded proxies of C reactive protein concentration to study its causal role in coronary heart disease. Design Mendelian randomisation meta-analysis of individual participant data from 47 epidemiological studies in 15 countries. Participants 194 418 participants, including 46 557 patients with prevalent or incident coronary heart disease. Information was available on four CRP gene tagging single nucleotide polymorphisms (rs3093077, rs1205, rs1130864, rs1800947), concentration of C reactive protein, and levels of other risk factors. Main outcome measures Risk ratios for coronary heart disease associated with genetically raised C reactive protein versus risk ratios with equivalent differences in C reactive protein concentration itself, adjusted for conventional risk factors and variability in risk factor levels within individuals. Results CRP variants were each associated with up to 30% per allele difference in concentration of C reactive protein (P<10 −34) and were unrelated to other risk factors. Risk ratios for coronary heart disease per additional copy of an allele associated with raised C reactive protein were 0.93 (95% confidence interval 0.87 to 1.00) for rs3093077; 1.00 (0.98 to 1.02) for rs1205; 0.98 (0.96 to 1.00) for rs1130864; and 0.99 (0.94 to 1.03) for rs1800947. In a combined analysis, the risk ratio for coronary heart disease was 1.00 (0.90 to 1.13) per 1 SD higher genetically raised natural log (ln) concentration of C reactive protein. The genetic findings were discordant with the risk ratio observed for coronary heart disease of 1.33 (1.23 to 1.43) per 1 SD higher circulating ln concentration of C reactive protein in prospective studies (P=0.001 for difference). Conclusion Human genetic data indicate that C reactive protein concentration itself is unlikely to be even a modest causal factor in coronary heart disease.
MicroRNAs have emerged as crucial regulators of cardiac homeostasis and remodeling in various cardiovascular diseases. We previously demonstrated that miR-221 regulated cardiac hypertrophy in vitro. In the present study, we demonstrated that the cardiac-specific overexpression of miR-221 in mice evoked cardiac dysfunction and heart failure. The lipidated form of microtubule-associated protein 1 light chain 3 was significantly decreased and sequestosome 1 was accumulated in cardiac tissues of transgenic (TG) mice, indicating that autophagy was impaired. Overexpression of miR-221 in vitro reduced autophagic flux through inhibiting autophagic vesicle formation. Furthermore, mammalian target of rapamycin (mTOR) was activated by miR-221, both in vivo and in vitro. The inactivation of mTOR abolished the miR-221-induced inhibition of autophagy and cardiac remodeling. Our previous study has demonstrated that cyclin-dependent kinase (CDK) inhibitor p27 was a direct target of miR-221 in cardiomyocytes. Consistently, the expression of p27 was markedly suppressed in the myocardia of TG mice. Knockdown of p27 by siRNAs was sufficient to mimic the effects of miR-221 overexpression on mTOR activation and autophagy inhibition, whereas overexpression of p27 rescued miR-221-induced autophagic flux impairment. Inhibition of CDK2 restored the impaired autophagic flux and rescued the cardiac remodeling induced by either p27 knockdown or miR-221 overexpression. These findings reveal that miR-221 is an important regulator of autophagy balance and cardiac remodeling by modulating the p27/CDK2/mTOR axis, and implicate miR-221 as a therapeutic target in heart failure. Cell Death and Differentiation ( Heart failure is the ultimate outcome of various cardiovascular diseases and is a leading cause of morbidity and mortality worldwide. Although drugs and other therapies have been developed for the management of heart failure, its 5-year mortality rate remains high.1 In response to myocardial stresses, the heart initially compensates with cardiomyocyte hypertrophy. Under prolonged stress, the heart undergoes irreversible cardiac remodeling, which finally results in cardiac decompensation and subsequent heart failure. The process of pathological cardiac remodeling involves the dysregulation of many coding and non-coding genes; however, not all of these genes have been well characterized.MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that posttranscriptionally regulate the degradation and/or translation of their target genes.2 A large body of evidence indicates that miRNA-mediated gene regulation has important roles in the control of cardiac homeostasis and pathological remodeling.3-8 We previously found that miR-221 is significantly upregulated in patients with hypertrophic cardiomyopathy (HCM) and in a mouse model of cardiac hypertrophy and heart failure induced by pressure overload. The in vitro overexpression of miR-221 alone is sufficient to increase the size of cardiomyocytes, accompanied by enhanced expression levels of...
UHRF1 expression is upregulated in CRC and is associated with the progression of CRC. Moreover, RNAi of UHRF1 decreases proliferation and migration but enhances apoptosis of CRC cells, with increased p16(ink4a) expression. UHRF1 promotes CRC growth and metastasis, likely by repressing p16(ink4a), and thus it may be used as a biomarker or even a therapeutic target for CRC.
RALS was associated with reduced estimated blood loss and a lower intraoperative conversion rate than CLS, with no differences in complication rates and surrogate markers of successful surgery. Robotic colorectal surgery is a promising tool, especially for patients with rectal cancer.
Metastasis is the main event leading to death in cancer patients. Over the past decade, high-throughput technologies have provided genome-wide view of transcriptomic changes associated with cancer metastases. Many microarray and RNA sequencing studies have addressed metastases-related expression patterns in various types of cancer, and the number of relevant works continues to increase rapidly. These works have characterized genes that orchestrate the metastatic phenotype of cancer cells. However, these expression data have been deposited in various repositories, and efficiently analyzing these data is still difficult because of the lack of an integrated data mining platform. To facilitate the in-depth analyses of transcriptome data on metastasis, it is quite important to make a comprehensive integration of these metastases-related expression data. Here, we presented a database, HCMDB (the human cancer metastasis database, http://hcmdb.i-sanger.com/index), which is freely accessible to the research community query cross-platform transcriptome data on metastases. HCMDB is developed and maintained as a useful resource for building the systems-biology understanding of metastasis.
The first meal of a neonatal calf after birth is crucial for survival and health. The present experiment was performed to assess the effects of colostrum quality on IgG passive transfer, immune and antioxidant status, and intestinal morphology and histology in neonatal calves. Twenty-eight Holstein neonatal male calves were used in the current study, 24 of which were assigned to 1 of 3 treatment groups: those that received colostrum (GrC), transitional milk (GrT, which was obtained after the first milking on 2-3 d after calving), and bulk tank milk (GrB) only at birth. The 4 extra neonatal calves who were not fed any milk were assigned to the control group and were killed immediately after birth to be a negative control to small intestinal morphology and histology detection. Calves in GrC gained more body weight than in GrT, whereas GrB calves lost 0.4 kg compared with the birth weight. Serum total protein, IgG, and superoxide dismutase concentrations were highest in GrC, GrT was intermediate, whereas GrB was the lowest on d 2, 3, and 7. Apparent efficiency of absorption at 48 h, serum complement 3 (C3), and complement 4 (C4) on d 2, 3, and 7 in GrB was low compared with GrC and GrT. On the contrary, malondialdehyde on d 7 increased in GrB. Calves in GrC had better villus length and width, crypt depth, villus height/crypt depth (V/C) value, and mucosal thickness in the duodenum, jejunum, and ileum, whereas GrT calves had lower villus length and width, crypt depth, and mucosal thickness than those fed colostrum. Villi of calves in GrB were nonuniform, sparse, severely atrophied, and apically abscised, and Peyer's patches and hydroncus were detected. Overall, colostrum is the best source for calves in IgG absorption, antioxidant activities, and serum growth metabolites, and promoting intestinal development. The higher quality of colostrum calves ingested, the faster immune defense mechanism and the more healthy intestinal circumstances they established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.