With the rapid growth and development of proton exchange membrane fuel cell (PEMFC) technology there has been an increasing demand for clean and sustainable global energy applications.While there are many device-level and infrastructure challenges still to be overcome before wide commercialization can be realized, increasing the PEMFC power density is a critical technical challenge, with ambitious goals proposed globally. For example, the short-term and long-term goals of the Japan New Energy and Industrial Technology Development Organization (NEDO) are 6 kW L -1 by 2030 and 9 kW L -1 by 2040, respectively. To this end, we propose technical development directions required for next-generation high power density PEMFCs. This perspective comprehensively embraces the latest advanced ideas for improvements in the membrane electrode assembly (MEA) and its components, bipolar plate (BP), integrated BP-MEA design, with regard to water and thermal management, and materials. The realization of these ideas is expected to be encompassed in next-generation PEMFCs with the aim of achieving a high power density.
One of the biggest causes of degradation in lithium-ion batteries is elevated temperature. In this study we explored the effects of cell surface cooling and cell tab cooling, reproducing two typical cooling systems that are used in real-world battery packs. For new cells using slow-rate standardized testing, very little difference in capacity was seen. However, at higher rates, discharging the cell in just 10 minutes, surface cooling led to a loss of useable capacity of 9.2% compared to 1.2% for cell tab cooling. After cycling the cells for 1,000 times, surface cooling resulted in a rate of loss of useable capacity under load three times higher than cell tab cooling. We show that this is due to thermal gradients being perpendicular to the layers for surface cooling leading to higher local currents and faster degradation, but in-plane with the layers for tab cooling leading to more homogenous behavior. Understanding how thermal management systems interact with the operation of batteries is therefore critical in extending their performance. For automotive applications where 80% capacity is considered end-of-life, using tab cooling rather than surface cooling would therefore be equivalent to extending the lifetime of a pack by 3 times, or reducing the lifetime cost by 66%. Due to their high energy and power densities, Lithium-ion batteries are a very important component of electric vehicles, and their use has increased dramatically in recent years as the uptake of hybrid and electric vehicles has increased.1-3 One of the major challenges of using lithium-ion batteries in hybrid and electric vehicles is thermal management, 4 which is important in order to manage degradation at an acceptable rate whilst maximizing the performance of the batteries and reducing the risk of thermal runaway. 5-7Many studies have shown that increased temperature leads to an increase in the rate of degradation, 4,[8][9][10][11] therefore the effectiveness of a thermal management system is vital in order to maximize the lifetime performance of the pack. The design of a good thermal management system for a battery pack should consider both the overall temperature of the pack and both intra-cell and internal thermal gradients. Poor design of thermal management systems could be a major contributing factor in increasing degradation rates to unacceptable levels. 12There are many different techniques that can be used to thermally manage batteries in hybrid and electric vehicles. It is possible to use either air or liquid as the cooling medium, and both of these can be used in either a direct (with cooling medium in contact with the cell) or indirect way. In addition to this, different areas of the cell can be cooled, namely the surfaces of the cell or the cell tabs. 13,14 In general, systems employing air as the cooling medium are considered to be simpler and cheaper to implement, although the performance is limited especially in applications where there is a high heat generation rate or if the batteries are being operated in a high ambient tempe...
Lithium ion batteries are increasingly important in large scale applications where thermal management is critical for safety and lifetime. Yet, the effect of different thermal boundary conditions on the performance and lifetime is still not fully understood. In this work, a two-dimensional electro-thermal model is developed to simulate cell performance and internal states under complex thermal boundary conditions. Attention was paid to model, not only the electrode stack but also the non-core components (e.g. tab weld points) and thermal boundaries, but also the experiments required to parameterize the thermal model, and the reversible heat generation. The model is comprehensively validated and the performance of tab and surface cooling strategies was evaluated across a wide range of operating conditions. Surface cooling was shown to keep the cell at a lower average temperature, but with a large thermal gradient for high C rates. Tab cooling provided much smaller thermal gradients but higher average temperatures caused by lower heat removing ability. The thermal resistance between the current collectors and tabs was found to be the most significant heat transfer bottleneck and efforts to improve this could have significant positive impacts on the performance of li-ion batteries considering the other advantages of tab cooling.
Effective thermal management and tracking of battery degradation are two key challenges in the improved management of battery packs. Entropy change measurement is a non-destructive tool for characterizing both the thermal and structural properties of lithium batteries. However, conventional entropy measurements based on discontinuous potentiometric methods are too time-consuming for practical implementation in battery packs. We present a comprehensive review of potentiometric methods for the entropy change measurement of lithium batteries. We compare conventional and improved discontinuous methods as well as a fully continuous method. Entropy measurements were then made using all the techniques for a solid-state microbattery using a bespoke test system utilising Peltier elements for rapid temperature control. The trade-off between accuracy and speed for the different methods is discussed in detail. In conclusion, the improved discontinuous measurement with significantly reduced voltage relaxation time is recommended for the determination of entropy change during the lithiation/delithiation intercalation reaction in lithium batteries.
Lithium-ion battery development is conventionally driven by energy and power density targets, yet the performance of a lithium-ion battery pack is often restricted by its heat rejection capabilities. It is therefore common to observe elevated cell temperatures and large internal thermal gradients which, given that impedance is a function of temperature, induce large current inhomogeneities and accelerate cell-level degradation. Battery thermal performance must be better quantified to resolve this limitation, but anisotropic thermal conductivity and uneven internal heat generation rates render conventional heat rejection measures, such as the Biot number, unsuitable. The Cell Cooling Coefficient (CCC) is introduced as a new metric which quantifies the rate of heat rejection. The CCC (units W.K −1) is constant for a given cell and thermal management method and is therefore ideal for comparing the thermal performance of different cell designs and form factors. By enhancing knowledge of pack-wide heat rejection, uptake of the CCC will also reduce the risk of thermal runaway. The CCC is presented as an essential tool to inform the cell down-selection process in the initial design phases, based solely on their thermal bottlenecks. This simple methodology has the potential to revolutionise the lithium-ion battery industry.
Lithium-ion cells can unintentionally be exposed to temperatures outside manufacturers recommended limits without triggering a full thermal runaway event. The question addressed in this paper is: Are these cells still safe to use? In this study, externally applied compression has been employed to prevent lithium ion battery failure during such events. Commercially available cells with Nickel Cobalt Manganese (NCM) cathodes were exposed to temperatures at 80 °C, 90 °C and 100 °C for 10 h, and electrochemically characterised before and after heating. The electrode stack structures were also examined using x-ray computed tomography (CT), and post-mortems were conducted to examine the electrode stack structure and surface changes. The results show that compression reduces capacity loss by −0.07%, 4.95% and 13.10% respectively, measured immediately after the thermal testing. The uncompressed cells at 80 °C showed no swelling, whilst 90 °C and 100 °C showed significant swelling. The X-ray CT showed that the uncompressed cell at 100 °C suffered de-lamination at multiple locations after test, and precipitations were found on the electrode surface. The post-mortem results indicates the compressed cell at 100 °C was kept tightly packed, and the electrode surface was uniform. The conclusion is that externally applied compression reduces delamination due to gas generation during high temperature excursions
Cooling electrical tabs of the cell instead of the lithium ion cell surfaces has shown to provide better thermal uniformity within the cell, but its ability to remove heat is limited by the heat transfer bottleneck between tab and electrode stack. A two-dimensional electro-thermal model was validated with custom made cells with different tab sizes and position and used to study how heat transfer for tab cooling could be increased. We show for the first time that the heat transfer bottleneck can be opened up with a single modification, increasing the thickness of the tabs, without affecting the electrode stack. A virtual large-capacity automotive cell (based upon the LG Chem E63 cell) was modelled to demonstrate that optimised tab cooling can be as effective in removing heat as surface cooling, while maintaining the benefit of better thermal, current and state-of-charge homogeneity. These findings will enable cell manufacturers to optimise cell design to allow wider introduction of tab cooling. This would enable the benefits of tab cooling, including higher useable capacity, higher power, and a longer lifetime to be possible in a wider range of applications.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers