Transforming growth factor-beta1 (TGF-β1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF-β1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate the role of TGF-β1 and its signaling molecule Smad3 in the acute liver injury induce by CCl4. The results showed that CCl4 induced acute liver injury in mice effectively confirmed by H&E staining of liver tissues, and levels of not only liver injury markers serum ALT and AST, but also serum TGF-β1 were elevated significantly in CCl4-treated mice, compared with the control mice treated with olive oil. Our data further revealed that TGF-β1 levels in hepatic tissue homogenate increased significantly, and type II receptor of TGF-β (TβRII) and signaling molecules Smad2, 3, mRNA expressions and Smad3 and phospho-Smad3 protein levels also increased obviously in livers of CCl4-treated mice. To clarify the effect of the elevated TGF-β1/Smad3 signaling on CCl4-induced acute liver injury, Smad3 in mouse liver was overexpressed in vivo by tail vein injection of Smad3-expressing plasmids. Upon CCl4 treatment, Smad3-overexpressing mice showed more severe liver injury identified by H&E staining of liver tissues and higher serum ALT and AST levels. Simultaneously, we found that Smad3-overexpressing mice treated with CCl4 showed more macrophages and neutrophils infiltration in liver and inflammatory cytokines IL-1β and IL-6 levels increment in serum when compared with those in control mice treated with CCl4. Moreover, the results showed that the apoptosis of hepatocytes increased significantly, and apoptosis-associated proteins Bax, cytochrome C and the cleaved caspase 3 expressions were up-regulated in CCl4-treated Smad3-overexpressing mice as well. These results suggested that TGF-β1/Smad3 signaling was activated during CCl4-induced acute liver injury in mice, and Smad3 overexpression aggravated acute liver injury by promoting inflammatory cells infiltration, inflammatory cytokines release and hepatocytes apoptosis. In conclusion, the activation of TGF-β signaling contributes to the CCl4-induced acute liver injury. Thus, TGF-β1/Smad3 may serve as a potential target for acute liver injury therapy.
Activin receptor-like kinases (ALKs), members of the type I activin receptor family, belong to the serine/threonine kinase receptors of the transforming growth factor-β (TGF-β) superfamily. ALKs mediate the roles of activin/TGF-β in a wide variety of physiological and pathological processes, ranging from cell differentiation and proliferation to apoptosis. For example, the activities of ALKs are associated with an advanced tumor stage in prostate cancer and the chondrogenic differentiation of mesenchymal stem cells. Therefore, potent and selective small molecule inhibitors of ALKs would not only aid in investigating the function of activin/TGF-β, but also in developing treatments for these diseases via the disruption of activin/TGF-β. In recent studies, several ALK inhibitors, including LY-2157299, SB-431542 and A-83-01, have been identified and have been confirmed to affect stem cell differentiation and tumor progression in animal models. This review discusses the therapeutic perspective of small molecule inhibitors of ALKs as drug targets in tumor and stem cells.
Activin A, a member of the transforming growth factor beta superfamily, acts as a pro-inflammatory factor in acute phase response, and influences the pathological progress of neutrophil-mediated disease. However, whether activin A can exert an effect on the activities of neutrophils remains unclear. In this study, we found that the release of activin A was enhanced from neutrophils of mouse when stimulated with lipopolysaccharide. Furthermore, neutrophils were not only the source of activin A but also the target cells in response to activin A, in which canonical activin signalling components existed, and levels of ACTRIIA, SMAD3 and p-SMAD3 proteins were elevated in activin A-treated neutrophils. Next, the role of activin A was determined in regulation of neutrophils activities. Our data revealed that activin A induced O2− release and reactive oxygen species production, promoted IL-6 release, and enhanced phagocytosis, but failed to attract neutrophils migrating across the trans-well membrane. Moreover, we found that effect of activin A on IL-6 release from the peritoneal neutrophils of mouse was significantly attenuated by in vivo Smad3 knockdown. In summary, these data demonstrate that activin A can exert an effect on neutrophils activation in an autocrine/paracrine manner through Smad3 signalling, suggesting that activin A is an important regulator of neutrophils.
Abstract. Activin A is a pleiotropic cytokine belonging to the transforming growth factor β superfamily. Abnormal expression of activin A is associated with tumorigenesis. Multiple myeloma is characterized by the development of osteolytic disease, which ultimately leads to cachexia. However, the involvement of activin A in myeloma cell viability and apoptosis remains to be fully elucidated. For this purpose, mouse myeloma NS-1 cells were treated with activin A, and subsequently subjected to 5-bromo-2'-deoxyuridine analysis, Hoechst 33342 staining, flow cytometry and western blot analysis. The results revealed that activin A significantly suppressed NS-1 cell viability, and induced NS-1 cell apoptosis. In addition, activin A-induced promotion of NS-1 cell apoptosis was accompanied by upregulated expression of BCL2 associated X, apoptosis regulator (Bax), but downregulated expression of B cell lymphoma-2 (Bcl-2), resulting in an increase of the Bax/Bcl-2 ratio. Furthermore, cytochrome c and caspase-3 protein expression also increased following treatment with activin A. These data suggest that activin A induces apoptosis in mouse myeloma NS-1 cells via the mitochondrial pathway, providing a novel insight into multiple myeloma treatment.
Sepsis is a common cause of mortality due to systemic infection. Although numerous studies have investigated this life-threatening condition, there remains a lack of suitable markers to evaluate the severity of sepsis. The present study focused on the identification of risk factors for sepsis‑associated mortality by genome‑wide expression profiling. Initially, the GEO2R web tool was used to identify the differentially expressed genes (DEGs) between sepsis survivors and nonsurvivors. It was identified that the upregulated DEGs in the nonsurvivors compared with survivors were highly enriched in the type I interferon (IFN‑I) signaling pathway. Furthermore, the associations of the upregulated genes were analyzed by STRING and the results demonstrated that a set of proteins in IFN‑I signaling pathway closely interacted with each other. To further investigate whether the IFN‑I signaling pathway is dysregulated in a subset of patients with a high risk of mortality due to sepsis, in this case neonates, the DEGs between the cord blood mononuclear cells of neonates and adult peripheral blood mononuclear cells were analyzed. It was identified that DEGs were not enriched in IFN‑I signaling in the blood of untreated neonates and adults; however, IFN‑I signaling was upregulated in the lipopolysaccharide (LPS)‑treated cord blood mononuclear cells of healthy neonates compared with the LPS‑treated peripheral blood mononuclear cells of adults. In addition, these data revealed that the proteins involved in the IFN‑I signaling pathway possessed a higher number of interacting partners. These results indicated that upregulated IFN‑I signaling may be a high-risk factor for mortality due to sepsis.
Activin A, a member of the transforming growth factor-beta (TGF-β) superfamily, contributes to tissue healing and fibrosis. As the innate tissue cells, fibroblasts also play an important role in wound healing and fibrosis. Herein, this study was aimed to investigate how activin A exhibited regulatory effects on adhesion and migration of fibroblasts. We found that activin A induced the migration of fibroblast cell line L929 cells in transwell chamber and microfluidic device. Activin A also promoted L929 cells adhesion, but did not affect L929 cells viability or proliferation. In addition, activin A induced α-SMA expression and TGF-β1 release, which were factors closely related to tissue fibrosis, but had no effect on IL-6 production, a pro-inflammatory cytokine. Furthermore, activin A elevated calcium levels in L929 cells and increased p-ERK protein levels. Activin A-induced migration of L929 cells was attenuated by ERK inhibitor FR180204. To conclude, these data indicated that activin A as a novel chemokine induced the chemotactic migration of L929 cells via ERK signaling and possessed the pro-fibrosis role. These findings provide a new insight into understanding of activin A in tissue fibrosis.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers