In vivoPET imaging studies of young-adult carriers of the apolipoprotein E ε4 allele (APOEε4), the major Alzheimer's disease (AD) susceptibility gene, have demonstrated declines in glucose metabolism in brain areas later vulnerable to AD, such as posterior cingulate cortex, decades before the possible onset of symptoms. We have previously shown in postmortem studies that such metabolic declines in AD are associated with brain regional mitochondrial dysfunction. To determine whether young adult at-risk individuals demonstrate similar mitochondrial functional decline, we histochemically assessed postmortem tissues from the posterior cingulate cortex of young-adult carriers and noncarriers of APOEε4. At-risk ε4 carriers had lower mitochondrial cytochrome oxidase activity than noncarriers in posterior cingulate cortex, particularly within the superficial cortical lamina, a pattern similar to that seen in AD patients. Except for one 34 year-old ε4 homozygote, the ε4 carriers did not have increased soluble amyloid-β, histologic amyloid-β, or tau pathology in this same region. This functional biomarker may prove useful in early detection and tracking of AD and indicates that mitochondrial mechanisms may contribute to the predisposition to AD before any evidence of amyloid or tau pathology.
Multiciliated ependymal (E1) cells line the brain ventricles and are essential for brain homeostasis. We previously identified in the lateral ventricles a rare ependymal subpopulation (E2) with only two cilia and unique basal bodies. Here we show that E2 cells form a distinct biciliated epithelium extending along the ventral third into the fourth ventricle. In the third ventricle floor, apical profiles with only primary cilia define an additional uniciliated (E3) epithelium. E2 and E3 cells' ultrastructure, marker expression and basal processes indicate that they correspond to subtypes of tanycytes. Using sonic hedgehog lineage tracing, we show that the third and fourth ventricle E2 and E3 epithelia originate from the anterior floor plate. E2 and E3 cells complete their differentiation 2–3 weeks after birth, suggesting a link to postnatal maturation. These data reveal discrete bands of E2 and E3 cells that may relay information from the CSF to underlying neural circuits along the ventral midline.
We have previously used fluorodeoxyglucose (FDG) autoradiography to detect the pattern of metabolic declines in two different transgenic mouse models of fibrillar beta-amyloid pathology in Alzheimer's disease (AD), including the PDAPP mouse, which overexpresses a mutant form of human APP, and the PSAPP mouse, which overexpresses mutant forms of the human APP and PS1 genes. In this study, we used the same approach to study a triple-transgenic (3xTG) model of AD, which overexpresses human APP, PS1 and tau mutations, and progressively develops amyloid plaques, neurofibrillary tangles, and synaptic dysfunction. Densitometric measurements from 55 brain regions were characterized and compared in 2, 12, and 18 month-old 3xTG and wildtype control mice (n=12/group). By 18 months of age, the 3xTG mice had significant reductions in FDG uptake in every measured brain region, including cortical and subcortical gray matter, cerebellar and brainstem regions. However, regional differences in normalized FDG uptake were apparent in the 2- and 12-month-old 3xTG mice, in a brain network pattern reminiscent of our previous analyses in the other mouse models. This prominently included the posterior cingulate/retrosplenial cortex, as in each previously-analyzed model. Overall, our analyses highlight consistencies in brain glucose uptake abnormalities across multiple mouse models of amyloid-associated pathophysiology. These mouse brain regional changes are homologous to alterations seen in PET scans from human AD patients and could thus be useful biomarkers for early testing of novel interventions.
Grade IV glioblastoma is characterized by increased kinase activity of epidermal growth factor receptor (EGFR); however, EGFR kinase inhibitors have failed to improve survival in individuals with this cancer because resistance to these drugs often develops. We showed that tumor necrosis factor–α (TNFα) produced in the glioblastoma microenvironment activated atypical protein kinase C (aPKC), thereby producing resistance to EGFR kinase inhibitors. Additionally, we identified that aPKC was required both for paracrine TNFα-dependent activation of the transcription factor nuclear factor κB (NF-κB) and for tumor cell–intrinsic receptor tyrosine kinase signaling. Targeting aPKC decreased tumor growth in mouse models of glioblastoma, including models of EGFR kinase inhibitor–resistant glioblastoma. Furthermore, aPKC abundance and activity were increased in human glioblastoma tumor cells, and high aPKC abundance correlated with poor prognosis. Thus, targeting aPKC might provide an improved molecular approach for glioblastoma therapy.
Alzheimer's disease (AD) is an increasingly common disease with massive personal and economic costs. While it has long been known that AD impacts the visual system, there has recently been an increased focus on understanding both pathophysiological mechanisms that may be shared between the eye and brain and how related biomarkers could be useful for AD diagnosis. Here, were review pertinent cellular and molecular mechanisms of AD pathophysiology, the presence of AD pathology in the visual system, associated functional changes, and potential development of diagnostic tools based on the visual system. Additionally, we discuss links between AD and visual disorders, including possible pathophysiological mechanisms and their relevance for improving our understanding of AD.
Atypical protein kinase C (aPKC) isoforms ζ and λ interact with polarity complex protein Par3 and are evolutionarily conserved regulators of cell polarity. Prkcz encodes aPKC-ζ and PKM-ζ, a truncated, neuron-specific alternative transcript, and Prkcl encodes aPKC-λ. Here we show that, in embryonic hippocampal neurons, two aPKC isoforms, aPKC-λ and PKM-ζ, are expressed. The localization of these isoforms is spatially distinct in a polarized neuron. aPKC-λ, as well as Par3, localizes at the presumptive axon, whereas PKM-ζ and Par3 are distributed at non-axon-forming neurites. PKM-ζ competes with aPKC-λ for binding to Par3 and disrupts the aPKC-λ-Par3 complex. Silencing of PKM-ζ or overexpression of aPKC-λ in hippocampal neurons alters neuronal polarity, resulting in neurons with supernumerary axons. In contrast, the overexpression of PKM-ζ prevents axon specification. Our studies suggest a molecular model wherein mutually antagonistic intermolecular competition between aPKC isoforms directs the establishment of neuronal polarity.axonogenesis | symmetry breaking | neurodevelopment
Purpose. Recent advances in molecular diagnostic technologies allow for the evaluation of solid tumor malignancies through noninvasive blood sampling, including circulating tumor DNA profiling (ctDNA). Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, often because of late presentation of disease. Diagnosis is often made using endoscopic ultrasound or endoscopic retrograde cholangiopancreatography, which often does not yield enough tissue for next-generation sequencing. With this study, we sought to characterize the ctDNA genomic alteration landscape in patients with advanced PDAC with a focus on actionable findings. Materials and Methods. From December 2014 through October 2019, 357 samples collected from 282 patients with PDAC at Mayo Clinic underwent ctDNA testing using a clinically available assay. The majority of samples were tested using the 73gene panel which includes somatic genomic targets, including complete or critical exon coverage in 30 and 40 genes, respectively, and in some, amplifications, fusions, and indels. Clinical data and outcome variables were available for 165 patients; with 104 patients at initial presentation. Results. All patients included in this study had locally advanced or metastatic PDAC. Samples having at least one alteration, when variants of unknown significance (VUS) were excluded, numbered 266 (75%). After excluding VUS, therapeutically relevant alterations were observed in 170 (48%) of the total 357 cohort, including KRAS (G12C), EGFR, ATM, MYC, BRCA, PIK3CA, and BRAF mutations. KRAS, SMAD, CCND2, or TP53 alterations were seen in higher frequency in patients with advanced disease. Conclusion.Our study is the largest cohort to date that demonstrates the feasibility of ctDNA testing in PDAC. We provide a benchmark landscape upon which the field can continue to grow. Future applications may include use of ctDNA to guide treatment and serial monitoring of ctDNA during disease course to identify novel therapeutic targets for improved prognosis. The Oncologist 2021;25:1-10 Implications for Practice: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis often due to late presentation of disease. Biopsy tissue sampling is invasive and samples are often inadequate, requiring repeated invasive procedures and delays in treatment. Noninvasive methods to identify PDAC early in its course may improve prognosis in PDAC. Using ctDNA, targetable genes can be identified and used for treatment.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers