Tokamak experiments show that the plasma empirical energy confinement scaling law varies with plasma ion mass (Ai) in a certain range under conditions of different plasma parameters or different devices. In order to understand such a modification of the empirical energy confinement scaling law, the isotope mass dependence of ion temperature gradient (ITG, including impurity modes) turbulence driven transport in the presence of tungsten impurity ions in tokamak plasma is studied by employing the gyrokinetic theory. The effect of heavy (tungsten) impurity ions on ITG and impurity mode is revealed to modify significantly the isotope mass dependence and effective charge effect. As the charge number of impurity ions (Z) or impurity charge concentration (fz) changes, the theoretical scaling law of ITG turbulence transport varies substantially in a relatively large range. The maximum growth rate of ITG mode scales as Mi-0.48 -0.12, whilst that of impurity mode scales as Mi-0.46 -0.3. Here, Mi is the mass number of primary ion in the plasma. In both cases the fitting index with Mi deviates further away from -0.5 when impurity charge concentration fz increases. The isotope mass dependence of ITG turbulence gradually weakens when the effective charge number Zeff increases. The isotope mass dependence of impurity mode turbulence also weakens with Zeff increasing for the same impurity ion charge number (Z). In contrast, the isotope mass dependence gradually strengthens with effective charge number Zeff increasing for the same impurity charge concentration (fz). On average, the maximum growth rates of impurity mode scale roughly as max~Mi-0.35Zeff1.5 and max~Mi-0.4Zeff1, respectively, for Zeff 3 and Zeff 3. The reason for the deviation of isotope scaling law from the normal case is investigated deliberately, and it is demonstrated that the isotope scaling index deviates from -0.5 more or less due to the fact that the impurity species, charge number and impurity concentrations vary in a certain range. These results demonstrate that it is impossible to deduce a unique isotope scaling law due to the variety of micro-instabilities and various plasma parameter regimes in tokamak plasma, which is consistent with the experimental observations. These results may contribute to the transport study involving heavy (tungsten) impurity ions in ITER discharge scenario investigation.
GPI (gas puff imaging) is one of the important diagnostics method for investigation of the radiation in the edge region of plasma. In this paper, atomic and molecular processes during GP (gas puff) passage are analyzed. The main radiation emitting from the gas is identified as the Hα line, appearing on the plasma edge region, and the expressions of its intensity and location are given. As viewed from imaging angle, space radiation photograph of hydrogen gas during the GP was obtained experimentally. Improvements of the imaging system and GP experiment arrangement on the HL-2A tokamak are introduced. The observation results confirm the above analysis. In the beginning stage of plasma, the GP hydrogen atoms can pass through the region where the plasma column is to be set up and the bright strip region is formed. In the general GP fuelling, CCD photos are in accordance with the control signals, and other diagnostic results. The strong Hα emissions in both the HFS and LFS sides of plasma are observed.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers