The tumor suppressor p53 is required for the maintenance of genomic integrity following DNA damage. One mechanism by which p53 functions is to induce a block in the transition between the G 1 and S phase of the cell cycle. Previous studies indicate that the Krüppel-like factor 4 (KLF4) gene is activated following DNA damage and that such activation depends on p53. In addition, enforced expression of KLF4 causes G 1 /S arrest. The present study examines the requirement of KLF4 in mediating the p53-dependent cell cycle arrest process in response to DNA damage. We show that the G 1 population of a colon cancer cell line, HCT116, that is null for the p53 alleles (−/−) was abolished following γ irradiation compared with cells with wild-type p53 (+/+). Conditional expression of KLF4 in irradiated HCT116 p53−/− cells restored the G 1 cell population to a level similar to that seen in irradiated HCT116 p53+/+ cells. Conversely, treatment of HCT116 p53+/+ cells with small interfering RNA (siRNA) specific for KLF4 significantly reduced the number of cells in the G 1 phase following γ irradiation compared with the untreated control or those treated with a nonspecific siRNA. In each case the increase or decrease in KLF4 level because of conditional induction or siRNA inhibition, respectively, was accompanied by an increase or decrease in the level of p21 WAF1/CIP1 . Results of our study indicate that KLF4 is an essential mediator of p53 in controlling G 1 /S progression of the cell cycle following DNA damage.The mammalian cell cycle is operationally divided into five distinct phases: gap 1 (G 1 ), DNA synthesis (S), gap 2 (G 2 ), mitosis (M), and growth arrest phase (G 0 ), also called quiescence (1). Complex networks of control mechanisms called "checkpoints" are responsible for the orderly progression of these events within the cell cycle. Defects in checkpoint control increase genetic instability, thereby contributing to uncontrolled proliferation (2). For example, damage to the DNA elicits a series of signal transduction pathways that result in an arrest of the cell cycle at various checkpoints (3). Much of the DNA damage-induced signals are funneled through p53, which directs further downstream actions that lead to inhibition of G 1 to S and G 2 to M transitions, among other events such as apoptosis (4). Therefore, it is not surprising that p53 is the most frequently mutated tumor suppressor gene in human cancers (5).The arrest in the transition between the G 1 and S phase of the cell cycle elicited by p53 requires in part the transcriptional activation of the gene encoding the cyclin-dependent kinase (Cdk) 1 inhibitor p21 WAF1/CIP1 (6,7). p21 WAF1/CIP1 binds to several G 1 cyclin-Cdk complexes and * This work was supported in part by Grants DK52230 and CA84197 from the National Institutes of Health. ¶ Recipient of a Georgia Cancer Coalition Distinguished Cancer Clinician Scientist award. To whom correspondence should be addressed: 201 Whitehead Biomedical Research Bldg., Emory University School of Medicine, 61...
Krüppel-like factor 4 (KLF4) is an epithelially enriched, zinc finger-containing transcription factor, the expression of which is associated with growth arrest. Constitutive expression of KLF4 inhibits G1/S transition of the cell cycle but the manner by which it accomplishes this effect is unclear. To better understand the biochemical function of KLF4, we identified its target genes using cDNA microarray analysis in an established human cell line containing inducible KLF4. RNA extracted from induced and control cells were hybridized differentially to microarray chips containing 9600 human cDNAs. In all, 84 genes with significantly increased expression and 107 genes with significantly reduced expression due to KLF4 induction were identified. The affected genes are sorted to several clusters on the basis of functional relatedness. A major cluster belongs to genes involved in cell-cycle control. Within this cluster, many up-regulated genes are inhibitors of the cell cycle and down-regulated genes are promoters of the cell cycle. Another up-regulated gene cluster includes nine keratin genes, of which seven are located in a specific region on chromosome 12. The results indicate that KLF4 is involved in the control of cell proliferation and does so by eliciting changes in expression of numerous cell-cycle regulatory genes in a concerted manner. Furthermore, KLF4 regulates expression of a group of epithelial-specific keratin genes in a manner consistent with a potential locus control region function.
Intestinal-enriched Krü ppel-like factor (IKLF or KLF5) belongs to the family of mammalian Krü ppel-like transcription factors. Previous studies indicate that expression of IKLF is enriched in the proliferating crypt epithelial cells of the intestinal tract. However, the biological function of IKLF is unknown. In the current study, we have shown that the level of IKLF mRNA was nearly undetectable in serum-deprived NIH3T3 fibroblasts but became acutely and significantly increased upon the addition of fetal bovine serum or the phorbol ester, PMA. This induction required protein synthesis because it was prevented by cycloheximide. Transfection of IKLF into NIH3T3 cells resulted in the formation of foci in a manner similar to that caused by the activated Ha-ras oncogene. Constitutive expression of IKLF in transfected NIH3T3 cells significantly increased the rate of proliferation when compared with cells transfected with an empty vector. The growth of IKLF-transfected cells was no longer inhibited by cell-cell contact or by low serum content. Moreover, these cells proliferated in an anchorage-independent fashion. We conclude that IKLF encodes a delayed early response gene product that positively regulates cellular proliferation and may give rise to a transformed phenotype when overexpressed.
Kru¨ppel-like factor 4 (KLF4) is a zinc-finger-containing transcription factor, the expression of which is enriched in the postmitotic cells of the intestinal epithelium. KLF4 is a target gene of the tumor suppressor adenomatous polyposis coli (APC). We sought to determine the role of KLF4 in suppressing the tumorigenecity of RKO colon cancer cells, which do not express KLF4. We utilized an established system in RKO cells, in which an inducible promoter controls expression of KLF4. Four independent assays were used to assess the effects of KLF4 induction on tumor cells. We find that KLF4 overexpression reduces colony formation, cell migration and invasion, and in vivo tumorigenecity. The mechanism of action of KLF4 does not involve apoptosis. These findings, along with our previous findings that KLF4 induces G1/S arrest, suggest that KLF4 is a cell cycle checkpoint protein that can reduce tumorigenecity of colon cancer cells.
The Ca2+-activated K+ channel KCa3.1 mediates cellular signaling processes associated with dysfunction of vasculature. However, the role of KCa3.1 in diabetic nephropathy is unknown. We sought to assess whether KCa3.1 mediates the development of renal fibrosis in two animal models of diabetic nephropathy. Wild-type and KCa3.1−/− mice, and secondly eNOS−/− mice, had diabetes induced with streptozotocin and then were treated with/without a selective inhibitor of KCa3.1 (TRAM34). Our results show that the albumin-to-creatinine ratio significantly decreased in diabetic KCa3.1−/− mice compared with diabetic wild-type mice and in diabetic eNOS−/− mice treated with TRAM34 compared with diabetic mice. The expression of monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule 1 (ICAM1), F4/80, plasminogen activator inhibitor type 1 (PAI-1), and type III and IV collagen significantly decreased (P < 0.01) in kidneys of diabetic KCa3.1−/− mice compared with diabetic wild-type mice. Similarly, TRAM34 reduced the expression of the inflammatory and fibrotic markers described above in diabetic eNOS−/− mice. Furthermore, blocking the KCa3.1 channel in both animal models led to a reduction of transforming growth factor-β1 (TGF-β1) and TGF-β1 type II receptor (TβRII) and phosphorylation of Smad2/3. Our results provide evidence that KCa3.1 mediates renal fibrosis in diabetic nephropathy through the TGF-β1/Smad signaling pathway. Blockade of KCa3.1 may be a novel target for therapeutic intervention in patients with diabetic nephropathy.
We have examined the role that the transcription factor gut-enriched Krüppel-like factor (KLF4 or GKLF) plays in activating the enterocyte differentiation marker gene intestinal alkaline phosphatase (IAP). A yeast one-hybrid screen was used to identify proteins interacting with a previously identified cis-element (IF-III) located within the human IAP gene promoter. DNA-protein interactions were determined by using EMSA. Northern blot analysis was used to study RNA expression in human colon cancer RKO cells engineered to overexpress KLF4. Transient transfections with IAP-luciferase reporter constructs were used to characterize the mechanisms by which KLF4 activates IAP transcription. The yeast one-hybrid screen and EMSA identified KLF4 as binding to IF-III. RKO cells induced to overexpress KLF4 demonstrated a corresponding dose-dependent increase in IAP expression, and EMSA with nuclear extract from these cells confirmed that KLF4 binds to the IF-III element. Transient transfections revealed that KLF4 transactivated the IAP gene largely via a critical segment in the IAP promoter that includes the IF-III cis-element. Mutant KLF4 constructs failed to fully activate IAP. We have identified the enterocyte differentiation marker IAP as a KLF4 target gene. IAP transactivation by KLF4 is likely mediated through a critical region located within the proximal IAP promoter region.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) are ligand-activated transcription factors that regulate cell growth, inflammation, lipid metabolism, and insulin sensitivity. PPAR-gamma in the human kidney has been described. However, the role of PPAR-gamma in proximal tubular cells with respect to cell growth and inflammation in diabetic nephropathy is largely unknown. We evaluated the effect of high (30 mM) D-glucose, thiazolidinedione pioglitazone (10 microM), and the selective PPAR-gamma agonist L-805645 (8 microM) on PPAR-gamma expression, growth, and inflammatory parameters in the proximal tubular model of HK-2 cells. PPAR-gamma was present in HK-2 cells and upregulated with 30 mM D-glucose to 177 +/- 31.2% of control (P < 0.05). PPAR-gamma activation was induced by pioglitazone to a similar level to that observed by exposure to high glucose but maximally induced by the selective agonist L-805645. However, L-805645 reduced cell viability in both 5 and 30 mM d-glucose to 73.8 +/- 3.1 and 77.6 +/- 1.4% of control (both P < 0.0001). In parallel, thymidine incorporation was reduced with L-805645 in both 5 and 30 mM D-glucose to 33.3 +/- 3.4 and 37.9 +/- 2.2%, respectively (both P < 0.0001). Flow cytometry demonstrated increased apoptosis and G(1) phase arrest in association with an increase in p21(cip1/waf1) in cells exposed to L-805645. Exposure to 30 mM D-glucose did not significantly change AP-1 promoter activity (89.0 +/- 5.5% of control); however, the addition of L-805645 significantly reduced it to 62.2 +/- 2.7% of control (P < 0.0001). Thirty nanomolar D-glucose induced transforming growth factor-beta(1) to 137.7 +/- 16.9% of control (P < 0.05), and L-805645 was able to suppress this to 68.7 +/- 5.7% of control (P < 0.01 vs. d-glucose). Exposure to 30 mM D-glucose reduced monocyte chemoattractant protein 1 levels to 78.6 +/- 7.1% (P < 0.05) of control, with the reduction more marked in the presence of either pioglitazone (P < 0.01) or L-805645 (P < 0.01). In summary, high glucose upregulates PPAR-gamma and when significantly induced demonstrates anti-proliferative and anti-inflammatory effects.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers