In recent years, many models based on the convolutional neural network have achieved highquality reconstruction for single image super-resolution. Meanwhile, many researches on image superresolution have been applied to various fields. However, only a few research works have been applied to climate prediction. In this paper, we present ResLap to achieve high-resolution climate prediction. ResLap is a spatial downscaling method that converts low spatial resolution climate data into high-resolution regional climate forecasts. This method mainly introduces a novel residual dense block (RDB) into the Laplacian pyramid super-resolution network (LapSRN). Among them, we use LapSRN to achieve upsampling image reconstruction, and adopt RDB to fully extract the hierarchical features from all the convolutional layers. Extensive experimental results on benchmark climate datasets show that our new proposed model performs better than many super-resolution methods. Besides, the climate data are more complicated than the general image, because of its dynamic and chaotic nature. To facilitate model training, we integrate original climate data provided by the China Meteorological Administration, then convert it into trainable climate images. We also publish some climate image datasets online for research. Finally, we avoid the checkerboard artifacts in the generated high-resolution climate images. INDEX TERMS Super-resolution, climate image, checkerboard artifacts, convolutional neural network.
Density-based spatial clustering of applications with noise (DBSCAN) is a density-based clustering algorithm that has the characteristics of being able to discover clusters of any shape, effectively distinguishing noise points and naturally supporting spatial databases. DBSCAN has been widely used in the field of spatial data mining. This paper studies the parallelization design and realization of the DBSCAN algorithm based on the Spark platform, and solves the following problems that arise when computing macro data: the requirement of a great deal of calculation using the single-node algorithm; the low level of resource-utilization with the multi-node algorithm; the large time consumption; and the lack of instantaneity. The experimental results indicate that the proposed parallel algorithm design is able to achieve more stable speedup at an increased involved spatial data scale.
A web geographical information system is a typical service-intensive application. Tile prefetching and cache replacement can improve cache hit ratios by proactively fetching tiles from storage and replacing the appropriate tiles from the high-speed cache buffer without waiting for a client’s requests, which reduces disk latency and improves system access performance. Most popular prefetching strategies consider only the relative tile popularities to predict which tile should be prefetched or consider only a single individual user's access behavior to determine which neighbor tiles need to be prefetched. Some studies show that comprehensively considering all users’ access behaviors and all tiles’ relationships in the prediction process can achieve more significant improvements. Thus, this work proposes a new global user-driven model for tile prefetching and cache replacement. First, based on all users’ access behaviors, a type of expression method for tile correlation is designed and implemented. Then, a conditional prefetching probability can be computed based on the proposed correlation expression mode. Thus, some tiles to be prefetched can be found by computing and comparing the conditional prefetching probability from the uncached tiles set and, similarly, some replacement tiles can be found in the cache buffer according to multi-step prefetching. Finally, some experiments are provided comparing the proposed model with other global user-driven models, other single user-driven models, and other client-side prefetching strategies. The results show that the proposed model can achieve a prefetching hit rate in approximately 10.6% ~ 110.5% higher than the compared methods.
An Agent-as-a-Service (AaaS)-based geospatial service aggregation is proposed to build a more efficient, robust and intelligent geospatial service system in the Cloud for flood emergency response. It involves an AaaS infrastructure, encompassing the mechanisms and algorithms for geospatial Web Processing Service (WPS) generation, geoprocessing and aggregation. The method has the following advantages: 1) it allows separately hosted services and data to work together, avoiding transfers of large volumes of spatial data over the network; 2) it enriches geospatial service resources in the distributed environment by utilizing the agent cloning, migration and service regeneration capabilities of the AaaS, solving issues associated with lack of geospatial services to a certain extent; 3) it enables the migration of services to target nodes to finish a task, strengthening decentralization and enhancing the robustness of geospatial service aggregation; and 4) it helps domain experts and authorities solve interdisciplinary emergency issues using various Agent-generated geospatial services.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.