Pathogenic mycobacteria transport virulence factors across their complex cell wall via a type VII secretion system (T7SS)/early secreted antigenic target-6 of kDa secretion system (ESX). ESX conserved component (Ecc) B, a core component of the T7SS architecture, is predicted to be a membrane bound protein, but little is known about its structure and function. Here, we characterize EccB1, showing that it is an ATPase with no sequence or structural homology to other ATPases located in the cell envelope of Mycobacterium tuberculosis H37Rv. We obtained the crystal structure of an EccB1-DN72 truncated transmembrane helix and performed modeling and ATP docking studies, showing that EccB1 likely exists as a hexamer. Sequence alignment and ATPase activity determination of EccB1 homologues indicated the presence of 3 conserved motifs in the N-and C-terminals of EccB1-DN72 that assemble together between 2 membrane proximal domains of the EccB1-DN72 monomer. Models of the EccB1 hexamer show that 2 of the conserved motifs are involved in ATPase activity and form an ATP binding pocket located on the surface of 2 adjacent molecules. Our results suggest that EccB may act as the energy provider in the transport of T7SS virulence factors and may be involved in the formation of a channel across the
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are prokaryotic adaptive immune systems against invading nucleic acids. CRISPR locus variability has been exploited in evolutionary and epidemiological studies of Mycobacterium tuberculosis, the causative agent of tuberculosis, for over 20 yr, yet the biological function of this type III-A system is largely unexplored. Here, using cell biology and biochemical, mutagenic, and RNA-seq approaches, we show it is active in invader defense and has features atypical of type III-A systems: mature CRISPR RNA (crRNA) in its crRNA-CRISPR/Cas protein complex are of uniform length (∼71 nt) and appear not to be subject to 3'-end processing after Cas6 cleavage of repeat RNA 8 nt from its 3' end. crRNAs generated resemble mature crRNA in type I systems, having both 5' (8 nt) and 3' (28 nt) repeat tags. Cas6 cleavage of repeat RNA is ion dependent, and accurate cleavage depends on the presence of a 3' hairpin in the repeat RNA and the sequence of its stem base nucleotides. This study unveils further diversity among CRISPR/Cas systems and provides insight into the crRNA recognition mechanism in M. tuberculosis, providing a foundation for investigating the potential of a type III-A-based genome editing system.-Wei, W., Zhang, S., Fleming, J., Chen, Y., Li, Z., Fan, S., Liu, Y., Wang, W., Wang, T., Liu, Y., Ren, B., Wang, M., Jiao, J., Chen, Y., Zhou, Yi., Zhou, Ya., Gu, S., Zhang, X., Wan, L., Chen, T., Zhou, L., Chen, Y., Zhang, X.-E., Li, C., Zhang, H., Bi, L. Mycobacterium tuberculosis type III-A CRISPR/Cas system crRNA and its maturation have atypical features.
Staphylococcus aureus (S. aureus) is an opportunistic bacterial pathogen responsible for a diverse spectrum of human diseases, resulting in considerable yearly mortality rates. Due to its rapid acquisition of antibiotic resistance, it becomes increasingly difficult to cure S. aureus infections with conventional antibiotics. Immunotherapy represents a promising alternative strategy to prevent and/or treat the infection. In the present study, passive immunization with polyclonal antibodies targeting three possible S. aureus antigens, Hla, SEB and MntC (termed “SAvac-pcAb”) after challenge with lethal dose of S. aureus resulted in reduced bacterial loads, inflammatory cell infiltration and decreased pathology, and was able to provide nearly complete protection in a murine sepsis model. In vitro studies confirmed the direct interaction of SAvac-pcAb with S. aureus bacteria. Additional studies validated that SAvac-pcAb contained both opsonic and neutralizing antibodies that contributed to its protective efficacy. The former mediated opsonophagocytosis in a neutrophil-dependent manner, while the later inhibited the biological functions of Hla and SEB, two major virulence factors secreted by S. aureus. Critically, we demonstrated that SAvac-pcAb was cross-reactive with different clinical strains of S. aureus. These results confirmed the efficacy for treatment of S. aureus infection by passive immunization as an important therapeutic option.
ObjectiveThe aim of the present meta-analysis is to evaluate the response rate, median survival time (MST) and toxicity in patients with brain metastases (BM) originating from non-small cell lung cancer (NSCLC) and who were treated using either whole brain radiotherapy (WBRT) plus concurrent chemotherapy or WBRT alone.MethodsPubMed, EMBASE, Web of Science, The Cochrane Library, clinical trials and current controlled trials were searched to identify any relevant publications. After screening the literature and undertaking quality assessment and data extraction, the meta-analysis was performed using Stata11.0 software.ResultsIn total, six randomized controlled trials (RCT) involving 910 participants were included in the meta-analysis. The results of the analysis indicate that WBRT plus concurrent chemotherapy was more effective at improving response rate (RR = 2.06, 95% CI [1.13, 3.77]; P = 0.019) than WBRT alone. However, WBRT plus concurrent chemotherapy did not improve median survival time (MST) (HR = 1.09, 95%CI [0.94, 1.26]; P = 0.233) or time of neurological progression (CNS-TTP) (HR = 0.93, 95%CI [0.75, 1.16]; P = 0.543), and increased adverse events (Grade≥3) (RR = 2.59, 95% CI [1.88, 3.58]; P = 0.000). There were no significant differences in Grade 3–5 neurological or hematological toxicity between two patient groups (RR = 1.08, 95%CI [0.23, 5.1]; P = 0.92).ConclusionThe combination of chemotherapy plus WBRT in patients with BM originating from NSCLC may increase treatment response rates of brain metastases with limited toxicity. Although the therapy schedule did not prolong MST or CNS-TTP, further assessment is warranted.
Innate immune effectors constitute the first line of host defense against pathogens. However, the roles of these effectors are not clearly defined during Klebsiella pneumoniae (K. pneumoniae) respiratory infection. In the current study, we established an acute pneumonia model of K. pneumoniae respiratory infection in mice and confirmed that the injury was most severe 48 h post infection. Flow cytometric assay demonstrated that alveolar macrophages were the predominant cells in BALF before infection, and neutrophils were quickly recruited after infection, and this was in consistent with the kinetics of chemokine expression. Further, we depleted neutrophils, macrophages, and complement pathways in vivo and challenged these mice with a sublethal dose of K. pneumonia, the result showed that 80%, 60%, and 40% of mice were died in these groups, respectively, while no deaths occurred in the control group. Besides, innate immune effector depleted mice showed higher bacterial burdens in lungs and blood, companied with more severe lung damage and increased levels of cytokine/chemokine expression. These results demonstrated that the innate immune effectors are critical in the early controlling of K. pneumoniae infection, and neutrophils are the most important. Thus, alternative strategies targeting these innate immune effectors may be effective in controlling of K. pneumoniae respiratory infection.
Outer membrane proteins (OMPs) represent an important class of proteins that are observed in gram-negative bacteria, mitochondria and chloroplasts. These proteins play diverse biological roles in protein translocation, cell-cell communication and signal transduction. A variety of OMPs have been identified in the gastrointestinal pathogen Helicobacter pylori (H. pylori) since it was first isolated in 1983. Among these proteins, outer membrane inflammatory protein A (OipA), which is encoded by hopH and unique to this pathogen, is a differentially expressed outer membrane protein that has been confirmed to be directly linked to H. pylori colonization, as well as to the pathogenesis of H. pylori and disease outcome. In this review, we will describe the progress of recent studies on OipA, particularly those on the functions and biological significance of this unique protein.
BackgroundThe appropriate treatment of non-small cell lung cancer (NSCLC) with single brain metastasis (SBM) is still controversial. A systematic review was designed to evaluate the effectiveness of neurosurgery and stereotactic radiosurgery (SRS) in patients with SBM from NSCLC.Material/MethodsPUBMED, EMBASE, the Cochrane Library, Web of Knowledge, Current Controlled Trials, Clinical Trials, and 2 conference websites were searched to select NSCLC patients with only SBM who received brain surgery or SRS. SPSS 18.0 software was used to analyze the mean median survival time (MST) and Stata 11.0 software was used to calculate the overall survival (OS).ResultsA total of 18 trials including 713 patients were systematically reviewed. The MST of the patients was 12.7 months in surgery group and 14.85 months in SRS group, respectively. The 1, 2, and 5 years OS of the patients were 59%, 33%, and 19% in surgery group, and 62%, 33%, and 14% in SRS group, respectively. Furthermore, in the surgery group, the 1 and 3 years OS were 68% and 15% in patients with controlled primary tumors, and 50% and 13% in the other patients with uncontrolled primary tumors, respectively. Interestingly, the 5-year OS was up to 21% in patients with controlled primary tumors.ConclusionsThere was no significant difference in MST or OS between patients treated with neurosurgery and SRS. Patients with resectable lung tumors and SBM may benefit from the resection of both primary lesions and metastasis.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers