Low-cost microelectro mechanical systems (MEMS)-based inertial measurement unit (IMU) measurements are usually affected by inaccurate scale factors, axis misalignments, and g-sensitivity errors. These errors may significantly influence the performance of visual-inertial methods. In this paper, we propose an online IMU self-calibration method for visual-inertial systems equipped with a low-cost inertial sensor. The goal of our method is to concurrently perform 3D pose estimation and online IMU calibration based on optimization methods in unknown environments without any external equipment. To achieve this goal, we firstly develop a novel preintegration method that can handle the IMU intrinsic parameters error propagation. Then, we frame IMU calibration problem into general factors so that we can easily integrate the factors into the current graph-based visual-inertial frameworks and jointly optimize the IMU intrinsic parameters as well as the system states in a big bundle. We evaluate the proposed method with a publicly available dataset. Experimental results verify that the proposed approach is able to accurately calibrate all the considered parameters in real time, leading to significant improvement of estimation precision of visual-inertial system (VINS) compared with the estimation results with offline precalibrated IMU measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.