Our results demonstrate convergence between AMPK and Nrf2 pathways and this intersection is essential for anti-inflammatory effect of BBR in LPS-stimulated macrophages and endotoxin-shocked mice. Uncovering this intersection is significant for understanding the relationship between energy homeostasis and antioxidative responses and may be beneficial for developing new therapeutic strategies against inflammatory diseases. Antioxid. Redox Signal. 20, 574-588.
Macroautophagy/autophagy has profound implications for aging. However, the true features of autophagy in the progression of aging remain to be clarified. In the present study, we explored the status of autophagic flux during the development of cell senescence induced by oxidative stress. In this system, although autophagic structures increased, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence and the activity of lysosomal proteolytic enzymes all decreased in senescent cells, indicating impaired autophagic flux with lysosomal dysfunction. The influence of autophagy activity on senescence development was confirmed by both positive and negative autophagy modulators; and MTOR-dependent autophagy activators, rapamycin and PP242, efficiently suppressed cellular senescence through a mechanism relevant to restoring autophagic flux. By time-phased treatment of cells with the antioxidant N-acetylcysteine (NAC), the mitochondria uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and ambroxol, a reagent with the effect of enhancing lysosomal enzyme maturation, we found that mitochondrial dysfunction plays an initiating role, while lysosomal dysfunction is more directly responsible for autophagy impairment and senescence. Interestingly, the effect of rapamycin on autophagy flux is linked to its role in functional revitalization of both mitochondrial and lysosomal functions. Together, this study demonstrates that autophagy impairment is crucial for oxidative stressinduced cell senescence, thus restoring autophagy activity could be a promising way to retard senescence.
Summary AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress‐induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide‐induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP‐RFP‐LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD + levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD + synthesis. In addition, the mechanistic relationship of autophagic flux and NAD + synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress‐induced senescence by improving autophagic flux and NAD + homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD + homeostasis, and it is also valuable in the development of innovative strategies to combat aging.
Aging-related, nonresolving inflammation in both the central nervous system (CNS) and periphery predisposes individuals to the development of neurodegenerative disorders (NDDs). Inflammasomes are thought to be especially relevant to immune homeostasis, and their dysregulation contributes to inflammation and NDDs. However, few agents have been clinically shown to reduce NDD incidence by targeting inflammasomes. Our study indicated that NLRP3 (NLR family, pyrin domain containing 3) inflammasome is involved in Parkinson disease (PD) progression in patients and various murine models. In addition, the small molecule kaempferol (Ka) protected mice against LPS-and SNCA-induced neurodegeneration by inhibiting NLRP3 inflammasome activation as evidenced by the fact that Ka reduced cleaved CASP1 expression and disrupted NLRP3-PYCARD-CASP1 complex assembly with concomitant decreased IL1B secretion. Mechanically, Ka promoted macroautophagy/autophagy in microglia, leading to reduced NLRP3 protein expression, which in turn deactivated the NLRP3 inflammasome. Intriguingly, ubiquitination was involved in Ka-induced autophagic NLRP3 degradation. These findings were further confirmed in vivo as knockdown of Atg5 expression or autophagy inhibitor treatment significantly inhibited the Ka-mediated NLRP3 inflammasome inhibition and neurodegeneration amelioration. Thus, we demonstrated that Ka promotes neuroinflammatory inhibition via the cooperation of ubiquitination and autophagy, suggesting that Ka is a promising therapeutic strategy for the treatment of NDDs.
Taurine transport undergoes an adaptive response to changes in taurine availability. Unlike most amino acids, taurine is not metabolized or incorporated into protein but remains free in the intracellular water. Most amino acids are reabsorbed at rates of 98-99%, but reabsorption of taurine may range from 40% to 99.5%. Factors that influence taurine accumulation include ionic environment, electrochemical charge, and post-translational and transcriptional factors. Among these are protein kinase C (PKC) activation and transactivation or repression by proto-oncogenes such as WT1, c-Jun, c-Myb and p53. Renal adaptive regulation of the taurine transporter (TauT) was studied in vivo and in vitro. Site-directed mutagenesis and the oocyte expression system were used to study post-translational regulation of the TauT by PKC. Reporter genes and Northern and Western blots were used to study transcriptional regulation of the taurine transporter gene (TauT). We demonstrated that (i) the body pool of taurine is controlled through renal adaptive regulation of TauT in response to taurine availability; (ii) ionic environment, electrochemical charge, pH, and developmental ontogeny influence renal taurine accumulation; (iii) the fourth segment of TauT is involved in the gating of taurine across the cell membrane, which is controlled by PKC phosphorylation of serine 322 at the post-translational level; (iv) expression of TauT is repressed by the p53 tumour suppressor gene and is transactivated by proto-oncogenes such as WT1, c-Jun, and c-Myb; and (v) over-expression of TauT protects renal cells from cisplatin-induced nephrotoxicity.
A novel pH sensitive shape‐memory polymer (SMP) is prepared by cross‐linking the β‐cyclodextrin modified alginate (β‐CD‐Alg) and diethylenetriamine modified alginate (DETA‐Alg): The pH reversible β‐CD‐DETA inclusion complexes serve as a reversible phase, and the cross‐linked alginate chains serve as a fixing phase. It is shown that this material can be processed into temporary shape as we needs at pH 11.5 and recover to its initial shape at pH 7. The recovery ratio and the fixity ratio were 95.7 ± 0.9% and 94.8 ± 1.1%, respectively. Furthermore, this material showed good degradability and biocompatibility. Because the shape transition pH value is quite close to that of our body fluid and this pH triggered shape‐memory effect is convenient and safe to use, this material has a high potential for medical application.
Mechanisms underlying the association between fibroblastic growth factor 23 (FGF-23) and inflammation are uncertain. We found that FGF-23 was markedly up-regulated in LPS/INF-γ-induced proinflammatory M1 macrophages and Hyp mouse-derived peritoneal macrophages, but not in IL-4-induced M2 anti-inflammatory macrophages. NF-κB and JAK/STAT1 pathways mediated the increased transcription of FGF-23 in response to M1 polarization. FGF-23 stimulated TNF-α, but not IL-6, expression in M0 macrophages and suppressed Arginase-1 expression in M2 macrophages through FGFR-mediated mechanisms. 1,25(OH)2D stimulated Arginase-1 expression and inhibited FGF-23 stimulation of TNF-α. FGF-23 has proinflammatory paracrine functions and counter-regulatory actions to 1,25(OH)2D on innate immune responses.
Calcium has recently been shown to regulate fibroblast growth factor 23 (FGF-23), a bone-derived phosphate and vitamin D-regulating hormone. To better understand the regulation of FGF-23 by calcium, phosphorus, 1,25 dihydroxyvitamin D3 [1,25(OH)2D], and PTH, we examined FGF-23 expression under basal conditions and in response to PTH, doxercalciferol, or high-calcium diet treatment in Gcm2(-/-) and Cyp27b1(-/-) mutant mice. Gcm2(-/-) mice exhibited low serum PTH and 1,25(OH)2D concentrations, hypocalcemia, and hyperphosphatemia, whereas Cyp27b1(-/-) mice had high PTH, undetectable 1,25(OH)2D, hypocalcemia, and hypophosphatemia. Serum FGF-23 levels were decreased in both mutant models. Doxercalciferol administration increased serum FGF-23 levels in both mutant models. PTH administration to Gcm2(-/-) mice also increased serum FGF-23 levels, in association with an increase in both 1,25(OH)2D and calcium concentrations. Multiple regression analysis of pooled data indicated that changes in FGF-23 were positively correlated with serum calcium and 1,25(OH)2D but not related to changes in serum phosphate concentrations. A high-calcium diet also increased serum FGF-23 concentrations in Cyp27b1(-/-) mice in the absence of 1,25(OH)2D and in Gcm2(-/-) mice with low PTH. The addition of calcium to the culture media also stimulated FGF-23 message expression in MC3T3-E1 osteoblasts. In addition, FGF-23 promoter activity in cultured osteoblasts was inhibited by the L-calcium-channel inhibitor nifedipine and stimulated by calcium ionophores. The effects of chronic low calcium to prevent 1,25(OH)2D and PTH stimulation of FGF-23 in these mutant mouse models suggest that suppression of FGF-23 plays an important physiological adaptive response to hypocalcemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.