Human herpesvirus-8 (HHV-8) has been detected in Kaposi's sarcoma (KS) lesions of all types (AIDS-related, classical and endemic), in body-cavity-based B-cell lymphomas (BCBLs) and in lesions of multicentric Castleman's disease (MCD). We have identified a major gamma-herpesvirus-divergent locus (DL-B) in HHV-8 DNA encoding several HHV-8 unique open reading frames (ORFs), including a homologue of interleukin-6 (IL-6) and two homologues of macrophage inflammatory protein MIP-1. We show that the HHV-8-encoded IL-6 homologue (vIL-6) shares functional properties with endogenous IL-6 proteins and that both vIL-6 and vMIP-1 transcripts are present at high levels following butyrate induction of an HHV-8' BCBL cell line. Low amounts of constitutive vIL-6, but not vMIP-1, mRNA were also detected. The presence of a functional IL-6 homologue encoded by HHV-8 may provide a mechanistic model for the hypothesized role of HHV-8 in KS, MCD and BCBL that involves the mitogenic effects of vIL-6 on surrounding cells. MIP-1 proteins may enhance these effects through the chemotactic recruitment of endogenous cytokine-producing cells into affected tissues and could potentially influence HIV disease progression in coinfected individuals through interactions with the HIV co-receptor CCR-5.
Infection with Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8) is common in certain parts of Africa, the Middle East, and the Mediterranean, but is rare elsewhere, except in AIDS patients. Nevertheless, HHV8 DNA is found consistently in nearly all classical, endemic, transplant and AIDS-associated KS lesions as well as in some rare AIDS-associated lymphomas. The concept that HHV8 genomes fall into several distinct subgroups has been confirmed and refined by PCR DNA sequence analysis of the ORF-K1 gene encoding a highly variable glycoprotein related to the immunoglobulin receptor family that maps at the extreme left-hand end of the HHV-8 genome. Among more than 60 different tumor samples from the United States, central Africa, Saudi Arabia, Taiwan, and New Zealand, amino acid substitutions were found at a total of 62% of the 289 amino acid positions. These variations defined four major subtypes and 13 distinct variants or clades similar to those found for the HIV ENV protein. The B and D subtype ORF-K1 proteins differ from the A and C subtypes by 30 and 24%, respectively, whereas A and C differ from each other by 15%. In all cases tested, multiple samples from the same patient were identical. Examples of the B subtype were found almost exclusively in KS patients from Africa or of African heritage, whereas the rare D subtypes were found only in KS patients of Pacific Island heritage. In contrast, C subtypes were found predominantly in classic KS and in iatrogenic and AIDS KS in the Middle East and Asia, whereas U.S. AIDS KS samples were primarily A1, A4, and C3 variants. We conclude that this unusually high diversity, in which 85% of the nucleotide changes lead to amino acid changes, reflects some unknown powerful biological selection process that has been acting preferentially on this early lytic cycle membrane signalling protein. Two distinct levels of ORF-K1 variability are recognizable. Subtype-specific variability indicative of long-term evolutionary divergence is both spread throughout the protein as well as concentrated within two 40-amino-acid extracellular domain variable regions (VR1 and VR2), whereas intratypic variability localizes predominantly within a single 25-amino-acid hypervariable Cys bridge loop and apparently represents much more recent changes that have occurred even within specific clades. In contrast, numerous extracellular domain glycosylation sites and Cys bridge residues as well as the ITAM motif in the cytoplasmic domain are fully conserved. Overall, we suggest that rather than being a newly acquired human pathogen, HHV8 is an ancient human virus that is preferentially transmitted in a familial fashion and is difficult to transmit horizontally in the absence of immunosuppression. The division into the four major HHV8 subgroups is probably the result of isolation and founder effects associated with the history of migration of modern human populations out of Africa over the past 35,000 to 60,000 years.
BackgroundWe previously identified TrkB as an oncogene involved in promoting metastasis in endometrial carcinoma (EC). Here, we sought to delineate the effect of changes in TrkB expression on the global profile of microRNAs (miRNAs) in EC cells and further investigated the correlation between the expression of certain miRNA and TrkB in the clinicopathologic characteristics of EC patients.Methods and resultsUsing quantitative reverse transcription-PCR (qRT-PCR), we found that expression of TrkB mRNA has no significant difference in transcript levels between normal endometrium and EC cells captured by laser capture microdissection, while immunohistochemistry results demonstrated a markedly higher expression of TrkB protein in EC tissues. The microRNA array showed that ectopic overexpression and knockdown of TrkB expression caused global changes in miRNA expression in EC cells. qRT-PCR results showed that elevated TrkB repressed miR-204-5p expression in EC cells. Furthermore, immunoblotting assays revealed that TrkB overexpression in IshikawaTrkB cells noticeably increased JAK2 and STAT3 phosphorylation, which, however, was aborted by TrkB knockdown in HEC-1BshTrkB cells. Moreover, ChIP assays showed that phospho-STAT3 could directly bind to STAT3-binding sites near the TRPM3 promoter region upstream of miR-204-5p. Interestingly, using bioinformatics analysis and luciferase assays, we identified TrkB was a novel target of miR-204-5p. Functionally, the MTT assays, clonogenic and Transwell assays showed that miR-204-5p significantly suppressed the clonogenic growth, migration and invasion of EC cells. Furthermore, miR-204-5p also inhibited the growth of tumor xenografts bearing human EC cells. Importantly, we found lower miR-204-5p expression was associated with advanced FIGO stages, lymph node metastasis and probably a lower chance for survival in EC patients.ConclusionsThis study uncovers a new regulatory loop involving TrkB/miR-204-5p that is critical to the tumorigenesis of EC and proposes that reestablishment of miR-204-5p expression could be explored as a potential new therapeutic target for this disease.
Abstract. Long non-coding RNAs (lncRNAs) are emerging as key molecules in human cancer. Homeobox (HOX) transcript antisense intergenic RNA (HOTAIR), a long non-coding RNA (lncRNA), is associated with a variety of human cancers, such as breast, liver and lung cancer. However, whether HOTAIR can function as a molecular marker in endometrial carcinoma (EC) remains unknown. In the present study, the expression of HOTAIR in 66 EC tissues from patients with EC and 30 normal tissues from healthy age-matched control subjects was determined using quantitative reverse transcription PCR. Furthermore, using in situ hybridization, we measured HOTAIR expression in 129 formalin-fixed paraffin-embedded (FFPE) tissue sections, which included 96 tissues that matched the frozen cases, 21 other EC tissues and 12 atypical hyperplasia tissues. Correlations between HOTAIR expression and the clinicopathological characteristics of patients were analyzed. Our results revealed that HOTAIR expression in the EC tissues was significantly upregulated compared with normal tissues (p<0.001). In addition, we observed a significant association between HOTAIR expression and the EC grade (p<0.05) and lymph node metastasis (p<0.05). Moreover, in the FFPE tissues, but not the frozen tissues, we found that a higher HOTAIR expression also correlated with the depth of myometrial invasion (p=0.019) and lymphovascular space invasion (p=0.015). More importantly, patients with a higher HOTAIR expression showed significantly poorer overall survival than those with lower HOTAIR expression (p<0.05). In conclusion, our results suggest that a high expression of HOTAIR is involved in the progression of cancer and may be a novel biomarker of poor prognosis in patients with EC. IntroductionEndometrial carcinoma (EC) is one of the most common malignancies of the female reproductive system in Western countries. In 2013, an estimated 49,500 new cases and 8,200 deaths due to EC are expected in the USA (1). With the increase in obesity and the decrease in physical activity, the incidence of EC is rising and shows a trend in younger women (2). EC is usually classified into two types to determine the risk of metastasis and recurrence (3). Generally, type I endometrioid endometrial carcinomas (EECs) have a good prognosis and account for 80-85% of the total cases of EC. By contrast, type II non-EECs are often associated with a worse outcome (3,4). However, the prognostic value of this classification is unsatisfactory, as approximately 20% of type I tumors recur, whereas 50% of type II tumors recur (5). A number of previous studies have demonstrated the utility of molecular alterations as prognostic markers, including p53 (6), phosphatase and tensin homolog (PTEN) (7) and ; however, their value is limited (9). Thus, a deeper understanding of the molecular mechanisms responsible for EC is required for risk stratification and a clinical decision regarding individualized treatment strategies.Recent studies have indicated that only 2% of transcripts are protein-coding RNAs, and ...
An electron paramagnetic resonance image was measured for the first time from in vivo field gradient spectra of a living murine tumor (Cloudman S-91 melanoma in the tail of a DBA-2J mouse) using the paramagnetic nitroxide imaging agent 3-carboxamido-2,2,5,5-tetramethylpyrroline-1-oxyl injected into the tail vein. The experiments were accomplished at L-band frequency (1.55 GHz) with a single-turn flat-loop coil. A cross-sectional image was obtained perpendicular to the tail axis, which clearly distinguished features to the submillimeter resolution level.
The purpose of this study is to explore the possible link between oxidative stress and endoplasmic reticulum (ER) stress in palmitate (PA) induced apoptosis of INS-1 cells, and to figure out the main source of reactive oxygen species (ROS) and the effect of ROS inhibition on the level of ER stress. In this study, INS-1 cells were exposed to PA and oleate for the indicated times. Cell viability and apoptosis were measured by MTT and ELISA; ROS was detected by the probe DCFH-DA and MitoSOX Red using flow cytometer; and the ER stress-related chaperones were measured by western blotting and real time PCR. The level of JNK phosphorylation was also measured by western blotting. The results showed that, in PA-treated cells, apoptosis increased in a dose-dependent way. ROS generation was mainly increased through mitochondrion, and ROS inhibition reduced the expression of some ER chaperones and transcription factors levels. Also, inhibition of JNK phosphorylation ameliorated PA-induced apoptosis. It is concluded that, ROS inhibition, especially inhibiting the ROS from mitochondria, may reduce the expression of some ER stress-related effectors and show a protective role in PA-induced pancreatic beta-cell apoptosis.
IntroductionGuidelines support the use of enteral nutrition to improve clinical outcomes in critical illness; however, the optimal calorie and protein intake remains unclear. The purpose of this meta-analysis was to quantitatively analyze randomised controlled trials with regard to clinical outcomes related to varying calorie and protein administration in critically ill adult patients.MethodWe searched Medline, EMBASE, and Cochrane databases to identify randomised controlled trials that compared the effects of initially different calorie and protein intake in critical illness. The risk ratio (RR) and weighted mean difference with 95% confidence intervals (CI) were calculated using random-effects models. The primary endpoint was mortality; secondary endpoints included infection, pneumonia, gastrointestinal intolerance, hospital and intensive care unit lengths of stay, and mechanical ventilation days.ResultsIn the eight randomised controlled trials that enrolled 1,895 patients there was no statistical difference between the low-energy and high-energy groups in mortality (RR, 0.90; 95% CI, 0.71 to 1.15; P = 0.40), infection (RR, 1.09; 95% CI, 0.92 to 1.29; P = 0.32), or the risk of gastrointestinal intolerance (RR, 0.84; 95% CI, 0.59 to 1.19; P = 0.33). In subgroup analysis, the low-energy subgroup, fed 33.3 to 66.6% of goal energy, showed a lower mortality than the high-energy group (RR, 0.68; 95% CI, 0.51 to 0.92; P = 0.01). The improvements in mortality and gastrointestinal intolerance were absent when calorie intake was >66.6% of goal energy in the low-energy group. High-energy intake combined with high-protein intake reduced the infections (RR, 1.25; 95% CI, 1.04 to 1.52; P = 0.02); however, when the daily protein intake was similar in both groups, a high-energy intake did not decrease the infections. No statistical differences were observed in other secondary outcomes.ConclusionThis meta-analysis indicates that high-energy intake does not improve outcomes and may increase complications in critically ill patients who are not malnourished. Initial moderate nutrient intake (33.3 to 66.6% of goal energy), compared to high energy, may reduce mortality, and a higher protein intake combined with high energy (≥0.85 g/kg per day) may decrease the infection rate. However, the contribution of energy versus protein intake to outcomes remains unknown.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-015-0902-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.