In this paper we propose an adaptation of the Eikonal equation on weighted graphs, using the framework of Partial difference Equations, and with the motivation of extending this equation's applications to any discrete data that can be represented by graphs. This adaptation leads to a finite difference equation defined on weighted graphs and a new efficient algorithm for multiple labels simultaneous propagation on graphs, based on such equation. We will show that such approach enables the resolution of many applications in image and high dimensional data processing using a unique framework. Keywords Eikonal equation • weighted graph • non-local image processing • active contour • PdE • fast marching • high dimensional data This work was supported under a doctoral grant of the Conseil Régional de Basse-Normandie and the Coeur et Cancer association.
In this paper, we introduce a new class of nonlocal p-Laplacian operators that interpolate between non-local Laplacian and infinity Laplacian. These operators are discrete analogous of the game p-laplacian operators on Euclidean spaces, and involve discrete morphological gradient on graphs. We study the Dirichlet problem associated with the new p-Laplacian equation and prove existence and uniqueness of it's solution. We also consider non-local diffusion on graphs involving these operators. Finally, we propose to use these operators as a unified framework for solution of many inverse problems in image processing and machine learning. Index Terms-p-Laplacian, PDEs-based morphology on graphs, image processing, machine learning, Tug-of-war games.
Abstract. In this paper we propose an adaptation of the static eikonal equation over weighted graphs of arbitrary structure using a framework of discrete operators. Based on this formulation, we provide explicit solutions for the L1, L2 and L∞ norms. Efficient algorithms to compute the explicit solution of the eikonal equation on graphs are also described. We then present several applications of our methodology for image processing such as superpixels decomposition, region based segmentation or patchbased segmentation using non-local configurations. By working on graphs, our formulation provides an unified approach for the processing of any data that can be represented by a graph such as high-dimensional data.
Game-theoretic p-Laplacian or normalized p-Laplacian operator is a version of classical variational p-Laplacian which was introduced recently in connection with stochastic games called Tug-of-War with noise (Peres et al. 2008, Tug-of-war with noise: A game-theoretic view of the p-laplacian. Duke Mathematical Journal145(1), 91–120). In this paper, we propose an adaptation and generalization of this operator on weighted graphs for 1 ≤ p ≤ ∞. This adaptation leads to a partial difference operator which is a combination between 1-Laplace, infinity-Laplace and 2-Laplace operators on graphs. Then we consider the Dirichlet problem associated to this operator and we prove the uniqueness and existence of the solution. We show that the solution leads to an iterative non-local average operator on graphs. Finally, we propose to use this operator as a unified framework for interpolation problems in signal processing on graphs, such as image processing and machine learning.
In this paper we propose an adaptation of PDEs level sets over weighted graphs of arbitrary structure, based on PdEs and using a framework of discrete operators. A general PDEs level sets formulation is presented and an algorithm to solve such equation is described. Some transcriptions of well-known models under this formalism, as the mean-curvature-motion or active contours, are also provided. Then, we present several applications of our formalism, including image segmentation with active contours, using weighted graphs of arbitrary topologies.
In this paper, we propose a new graph-based approach to address the problem of cytological computer-aided diagnostic. Such approach uses our previously introduced formalism of PdEs-based morphology and geometric diffusion on graphs. The approach is illustrated through two applications in cytopathology (involving Feulgen and Papanicolaou colorations), with examples of nucleus extraction and classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.