a b s t r a c tA detailed analysis of the flow-flame interactions associated with acoustically coupled heat-release rate fluctuations was performed for a 10 kW, CH 4 /air, swirl stabilized flame in a gas turbine model combustor exhibiting self-excited thermo-acoustic oscillations at 308 Hz. High-speed stereoscopic particle image velocimetry, OH planar laser induced fluorescence, and OH* chemiluminescence measurements were performed at a sustained repetition rate of 5 kHz, which was sufficient to resolve the relevant combustor dynamics. Using spatio-temporal proper orthogonal decomposition, it was found that the flow-field contained several simultaneous periodic motions: the reactant flux into the combustion chamber periodically oscillated at the thermo-acoustic frequency (308 Hz), a helical precessing vortex core (PVC) circumscribed the burner nozzle at 515 Hz, and the PVC underwent axial contraction and extension at the thermo-acoustic frequency. The global heat release rate fluctuated at the thermo-acoustic frequency, while the heat release centroid circumscribed the combustor at the difference between the thermoacoustic and PVC frequencies. Hence, the three-dimensional location of the heat release fluctuations depended on the interaction of the PVC with the flame surface. This motivated the compilation of doubly phase resolved statistics based on the phase of both the acoustic and PVC cycles, which showed highly repeatable periodic flow-flame configurations. These include flames stabilized between the inflow and inner recirculation zone, large-scale flame wrap-up by the PVC, radial deflection of the inflow by the PVC, and combustion in the outer recirculation zones. Large oscillations in the flame surface area were observed at the thermo-accoustic frequency that significantly affected the total heat-release oscillations. By filtering the instantaneous reaction layers at different scales, the importance of the various flow-flame interactions affecting the flame area was determined. The greatest contributor was large-scale elongation of the reaction layers associated with the fluctuating reactant flow rate, which accounted for approximately 50% of the fluctuations. The remaining 50% was distributed between fine scale stochastic corrugation and large-scale corrugation due to the PVC.
The interaction of a helical precessing vortex core (PVC) with turbulent swirl flames in a gas turbine model combustor is studied experimentally. The combustor is operated with air and methane at atmospheric pressure and thermal powers from 10 to 35 kW. The flow field is measured using particle image velocimetry (PIV), and the dominant unsteady vortex structures are determined using proper orthogonal decomposition. For all operating conditions, a PVC is detected in the shear layer of the inner recirculation zone (IRZ). In addition, a co-rotating helical vortex in the outer shear layer (OSL) and a central vortex originating in the exhaust tube are found. OH chemiluminescence (CL) images show that the flames are mainly stabilized in the inner shear layer (ISL), where also the PVC is located. Phase-averaged images of OH-CL show that for all conditions, a major part of heat release takes place in a helical zone that is coupled to the PVC. The mechanisms of the interaction between PVC and flame are then studied for the case P =10 kW using simultaneous PIV and OH-PLIF measurements with a repetition rate of 5 kHz. The measurements show that the PVC causes a regular sequence of flame roll-up, mixing of burned and unburned gas, and subsequent ignition of the mixture in the ISL. These effects are directly linked to the periodic vortex motions. A phase-averaged analysis of the flow field further shows that the PVC induces an unsteady lower stagnation point that is not present in the average flow field. The motion of the stagnation point is linked to the periodic precession of the PVC. Near this point burned and unburned gas collide frontally and a significant amount of heat release takes place. The flame dynamics near this point is also coupled to the PVC. In this way, a part of the reaction zone is periodically drawn from the stagnation point into the ISL, and thus serves as an ignition source for the reactions in this layer. In total, the effects in the ISL and at the stagnation point showed that the PVC plays an essential role in the stabilization mechanism of the turbulent swirl flames. In contrast to the PVC, the vortices in the OSL and near the exhaust tube have no direct effect on the flame since they are located outside the flame zone.
Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor, Combust. Flame 157 (2010)
Lean blowout (LBO) of a partially premixed swirl flame is studied using chemiluminescence imaging and simultaneous stereo-PIV and OH-PLIF measurements at repetition rates up to 5 kHz. The flame, which is operated with methane and air in a gas turbine model combustor at atmospheric pressure, features a pronounced precessing vortex core (PVC) at the inner shear layer. In the first part of the study, the stabilization mechanism of the flame close to LBO is investigated. The fields of velocity and OH show that near LBO there are essentially two regions where reaction takes place, namely the helical zone along the PVC and the flame root around the lower stagnation point. The zone along the PVC is favorable to the flame due to low strain rates in the vortex center and accelerated mixing of burned and fresh gas. The flame root, which is located close to the nozzle exit, is characterized by an opposed flow of hot burned gas and relatively fuel-rich fresh gas. Due to the presence of high strain rates, the flame root is inherently unstable near LBO, featuring frequent extinction and re-ignition. The blowout process, discussed in the second part of the study, starts when the extinction of the flame root persists over a critical length of time. Subsequently, the reaction in the helical zone can no longer be sustained and the flame finally blows out. The results highlight the crucial role of the flame root, and suggest that well-aimed modifications of flow field or mixture fraction in this region might shift the LBO limit to leaner conditions.
Simultaneous PIV and OH-PLIF measurements were conducted in an enclosed gas turbine model combustor for investigating the influence of turbulence on local flame characteristics. The non-premixed swirling CH 4 /air flame that was investigated had a thermal power of 10.3 kW, an overall equivalence ratio of φ = 0.75 and exhibited thermoacoustic oscillations at a frequency of approximately 295 Hz. The flame was lifted and burnt partially premixed. Different superequilibrium OH concentration levels were observed in the measurements. Calculations using the PREMIX code with GRI 3.0 mechanism revealed that the different OH levels are a strong function of the local φ and depend much less on the degree of premixing of CH 4 , air and hot gas. Reaction zones were identified by large gradients in the single shot OH-PLIF distributions. The measurements revealed the formation of reaction zones at regions of high flow velocities where the hot burned gas from the inner or outer recirculation zones mixes with the fresh fuel/air mixture at the burner exit. Though the reaction zones are continuous over a few centimeters like in flamelet regime, there exist regions where the mixture has failed to ignite, possibly due to the high local strain rates present, emphasizing the complex turbulence-chemistry interactions leading to finite rate chemistry effects. The instantaneous PIV images showed the existence of small vortical structures close to the shear layers much in contrast to the time averaged PIV images where the flowfields were typical of enclosed swirl burners, namely an inner recirculation zone and an outer recirculation zone. These small vortical structures were seen to play a vital role in the formation and destruction of reaction zone structures. The reaction zones were mostly formed at the interface between the hot and cold gases with the relative orientation of the reaction zone being parallel to the flowfield. However, in some regions the reaction zones were also seen to orient orthogonally to the flowfield without being disturbed by the high velocity flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.