Identifying the genetic variants that increase the risk of type 2 diabetes (T2D) in humans has been a formidable challenge. Adopting a genome-wide association strategy, we genotyped 1161 Finnish T2D cases and 1174 Finnish normal glucose-tolerant (NGT) controls with >315,000 single-nucleotide polymorphisms (SNPs) and imputed genotypes for an additional >2 million autosomal SNPs. We carried out association analysis with these SNPs to identify genetic variants that predispose to T2D, compared our T2D association results with the results of two similar studies, and genotyped 80 SNPs in an additional 1215 Finnish T2D cases and 1258 Finnish NGT controls. We identify T2D-associated variants in an intergenic region of chromosome 11p12, contribute to the identification of T2D-associated variants near the genes IGF2BP2 and CDKAL1 and the region of CDKN2A and CDKN2B, and confirm that variants near TCF7L2, SLC30A8, HHEX, FTO, PPARG, and KCNJ11 are associated with T2D risk. This brings the number of T2D loci now confidently identified to at least 10.
To identify genetic variants influencing plasma lipid concentrations, we first used genotype imputation and meta-analysis to combine three genome-wide scans totaling 8,816 individuals and comprising 6,068 individuals specific to our study (1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables) and 2,758 individuals from the Diabetes Genetics Initiative, reported in a companion study in this issue. We subsequently examined promising signals in 11,569 additional individuals. Overall, we identify strongly associated variants in eleven loci previously implicated in lipid metabolism (ABCA1, the APOA5-APOA4-APOC3-APOA1 and APOE-APOC clusters, APOB, CETP, GCKR, LDLR, LPL, LIPC, LIPG and PCSK9) and also in several newly identified loci (near MVK-MMAB and GALNT2, with variants primarily associated with high-density lipoprotein (HDL) cholesterol; near SORT1, with variants primarily associated with low-density lipoprotein (LDL) cholesterol; near TRIB1, MLXIPL and ANGPTL3, with variants primarily associated with triglycerides; and a locus encompassing several genes near NCAN, with variants strongly associated with both triglycerides and LDL cholesterol). Notably, the 11 independent variants associated with increased LDL cholesterol concentrations in our study also showed increased frequency in a sample of coronary artery disease cases versus controls.
Genome-wide association (GWA) studies have identified multiple new genomic loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D)1-11. Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to discover loci at which common alleles have modest effects, we performed meta-analysis of three T2D GWA scans encompassing 10,128 individuals of European-descent and ~2.2 million SNPs (directly genotyped and imputed). Replication testing was performed in an independent sample with an effective sample size of up to 53,975. At least six new loci with robust evidence for association were detected, including the JAZF1 (p=5.0×10 −14 ), CDC123/CAMK1D (p=1.2×10 −10 ), TSPAN8/ LGR5 (p=1.1×10 −9 ), THADA (p=1.1×10 −9 ), ADAMTS9 (p=1.2×10 −8 ), and NOTCH2 (p=4.1×10 −8 ) gene regions. The large number of loci with relatively small effects indicates the value of large discovery and follow-up samples in identifying additional clues about the inherited basis of T2D.Genome-wide association studies are unbiased by previous hypotheses concerning candidate genes and pathways, but challenged by the modest effect sizes of individual common susceptibility variants and the need for stringent statistical thresholds. For example, the largest allelic odds ratio of any established common variant for T2D is ~1.35 (TCF7L2), with the nine other validated associations to common variants (excluding FTO, which has its primary effect through obesity) having allelic odds ratios between 1.1 and 1. 21-6,11,12. To augment power to detect additional loci of similar and/or smaller effect, we increased sample size by combining three previously published GWA studies (Diabetes Genetics Initiative [DGI], Finland-United States Investigation of NIDDM Genetics [FUSION], and Wellcome Trust Case Control Consortium [WTCCC])1-4, and extended SNP coverage by imputing untyped SNPs based on patterns of haplotype variation from the HapMap dataset13 (Table 1).We started with a set of genotyped autosomal SNPs that passed quality control (QC) filters in each study: in WTCCC, 393,143 SNPs from the Affymetrix 500k chip (MAF>0.01; 1,924 cases and 2,938 population-based controls from the Wellcome Trust Case Control Consortium3,4); in DGI, 378,860 Using these directly measured and imputed genotypes, we tested for association of each SNP with T2D in each study separately, corrected each study for residual population stratification, cryptic relatedness or technical artifacts using genomic control, and then combined these results in a genome-wide meta-analysis across a total of 10,128 samples (4,549 cases, 5,579 controls) (Methods; Supplementary Methods). We calculated that this sample size provides reasonable power to detect additional variants with properties similar to those previously identified by less formal data combination efforts1,2,4 (Supplementary Table 2). Unless otherwise indicated, results presented are derived from...
Linkage analyses of genetic diseases and quantitative traits generally are performed using family data. These studies assume the relationships between individuals within families are known correctly. Misclassification of relationships can lead to reduced or inappropriately increased evidence for linkage. Boehnke and Cox (1997) presented a likelihood-based method to infer the most likely relationship of a pair of putative sibs. Here, we modify this method to consider all possible pairs of individuals in the sample, to test for additional relationships, to allow explicitly for genotyping error, and to include X-linked data. Using autosomal genome scan data, our method has excellent power to differentiate monozygotic twins, full sibs, parent-offspring pairs, second-degree (2 degrees ) relatives, first cousins, and unrelated pairs but is unable to distinguish accurately among the 2 degrees relationships of half sibs, avuncular pairs, and grandparent-grandchild pairs. Inclusion of X-linked data improves our ability to distinguish certain types of 2 degrees relationships. Our method also models genotyping error successfully, to judge by the recovery of MZ twins and parent-offspring pairs that are otherwise misclassified when error exists. We have included these extensions in the latest version of our computer program RELPAIR and have applied the program to data from the Finland-United States Investigation of Non-Insulin-Dependent Diabetes Mellitus (FUSION) study.
Transcription factor 7-like 2 (TCF7L2) is part of the
Etiologic heterogeneity is a fundamental feature of complex disease etiology; genetic linkage analysis methods to map genes for complex traits that acknowledge the presence of genetic heterogeneity are likely to have greater power to identify subtle changes in complex biologic systems. We investigate the use of trait-related covariates to examine evidence for linkage in the presence of heterogeneity. Ordered-subset analysis (OSA) identifies subsets of families defined by the level of a traitrelated covariate that provide maximal evidence for linkage, without requiring a priori specification of the subset. We propose that examining evidence for linkage in the subset directly may result in a more etiologically homogeneous sample. In turn, the reduced impact of heterogeneity will result in increased overall evidence for linkage to a specific region and a more distinct lod score peak. In addition, identification of a subset defined by a specific trait-related covariate showing increased evidence for linkage may help refine the list of candidate genes in a given region and suggest a useful sample in which to begin searching for trait-associated polymorphisms. This method provides a means to begin to bridge the gap between initial identification of linkage and identification of the disease predisposing variant(s) within a region when mapping genes for complex diseases. We illustrate this method by analyzing data on breast cancer age of onset and chromosome 17q [Hall et al., 1990, Science 250:1684-1689. We evaluate OSA using simulation studies under a variety of genetic models. & 2004 Wiley-Liss, Inc.
We performed a genome scan at an average resolution of 8 cM in 719 Finnish sib pairs with type 2 diabetes. Our strongest results are for chromosome 20, where we observe a weighted maximum LOD score (MLS) of 2.15 at map position 69.5 cM from pter and secondary weighted LOD-score peaks of 2.04 at 56.5 cM and 1.99 at 17.5 cM. Our next largest MLS is for chromosome 11 (MLS = 1.75 at 84.0 cM), followed by chromosomes 2 (MLS = 0.87 at 5.5 cM), 10 (MLS = 0.77 at 75.0 cM), and 6 (MLS = 0.61 at 112.5 cM), all under an additive model. When we condition on chromosome 2 at 8.5 cM, the MLS for chromosome 20 increases to 5.50 at 69.0 cM (P=.0014). An ordered-subsets analysis based on families with high or low diabetes-related quantitative traits yielded results that support the possible existence of disease-predisposing genes on chromosomes 6 and 10. Genomewide linkage-disequilibrium analysis using microsatellite marker data revealed strong evidence of association for D22S423 (P=.00007). Further analyses are being carried out to confirm and to refine the location of these putative diabetes-predisposing genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.