Background Phenotypic presentations in young children with asthma are varied and may contribute to differential responses to asthma controller medications. Methods The Individualized Therapy for Asthma in Toddlers (INFANT) study was a multicenter, randomized, double-blind, double-dummy, clinical trial in children age 12-59 months (n=300) with asthma necessitating treatment with daily controller (Step 2) therapy. Participants completed a 2-8 week run-in period followed by three crossover periods with daily inhaled corticosteroid (ICS), daily leukotriene receptor antagonist (LTRA), and as-needed ICS treatment co-administered with albuterol. The primary outcome was differential response to asthma medication based on a composite measure of asthma control. The primary analysis involved two stages: determination of differential response, and assessment of whether three pre-specified features (aeroallergen sensitization, previous exacerbations, sex) predicted differential response. Results 74% (170 of 230) of children with analyzable data had a differential response to the three treatment strategies. Within differential responders, the probability of best response was highest for daily ICS and was predicted by aeroallergen sensitization, but not exacerbation history or sex. The probability of best response to daily ICS was further increased in children with both aeroallergen sensitization and blood eosinophils ≥300/μL. In these children, daily ICS was associated with more asthma control days and fewer exacerbations compared to the other treatments. Conclusions In young children with asthma necessitating Step 2 treatment, phenotyping with aeroallergen sensitization and blood eosinophils is useful for guiding treatment selection and identifies children with a high exacerbation probability for whom treatment with daily ICS is beneficial despite possible risks of growth suppression.
IMPORTANCE Many preschool children develop recurrent, severe episodes of lower respiratory tract illness (LRTI). Although viral infections are often present, bacteria may also contribute to illness pathogenesis. Strategies that effectively attenuate such episodes are needed. OBJECTIVE To evaluate if early administration of azithromycin, started prior to the onset of severe LRTI symptoms, in preschool children with recurrent severe LRTIs can prevent the progression of these episodes. DESIGN, SETTING, AND PARTICIPANTS A randomized, double-blind, placebo-controlled, parallel-group trial conducted across 9 academic US medical centers in the National Heart, Lung, and Blood Institute’s AsthmaNet network, with enrollment starting in April 2011 and follow-up complete by December 2014. Participants were 607 children aged 12 through 71 months with histories of recurrent, severe LRTIs and minimal day-to-day impairment. INTERVENTION Participants were randomly assigned to receive azithromycin (12 mg/kg/d for 5 days; n = 307) or matching placebo (n = 300), started early during each predefined RTI (child’s signs or symptoms prior to development of LRTI), based on individualized action plans, over a 12-through 18-month period. MAIN OUTCOMES AND MEASURES The primary outcome measure was the number of RTIs not progressing to a severe LRTI, measured at the level of the RTI, that would in clinical practice trigger the prescription of oral corticosteroids. Presence of azithromycin-resistant organisms in oropharyngeal samples, along with adverse events, were among the secondary outcome measures. RESULTS A total of 937 treated RTIs (azithromycin group, 473; placebo group, 464) were experienced by 443 children (azithromycin group, 223; placebo group, 220), including 92 severe LRTIs (azithromycin group, 35; placebo group, 57). Azithromycin significantly reduced the risk of progressing to severe LRTI relative to placebo (hazard ratio, 0.64 [95% CI, 0.41-0.98], P = .04; absolute risk for first RTI: 0.05 for azithromycin, 0.08 for placebo; risk difference, 0.03 [95% CI, 0.00-0.06]). Induction of azithromycin-resistant organisms and adverse events were infrequently observed. CONCLUSIONS AND RELEVANCE Among young children with histories of recurrent severe LRTIs, the use of azithromycin early during an apparent RTI compared with placebo reduced the likelihood of severe LRTI. More information is needed on the development of antibiotic-resistant pathogens with this strategy.
Background Children spend a significant amount of time in school. Little is known about the role of allergen exposure in school environments and asthma morbidity. Objectives The School Inner-City Asthma (SICAS) is an NIH funded prospective study evaluating the school/classroom specific risk factors and asthma morbidity among urban children Methods/Results This paper describes the design, methods, and important lessons learned from this extensive investigation. A single center is recruiting 500 elementary school aged children, all of whom attend inner-city, metropolitan schools. The primary hypothesis is that exposure to common indoor allergens in the classroom will increase the risk of asthma morbidity in children with asthma, even after controlling for home allergen exposures. The protocol includes screening surveys of entire schools and baseline eligibility assessments obtained in the spring prior to the academic year. Extensive baseline clinical visits are being conducted among eligible children with asthma during the summer prior to the academic school year. Environmental classroom/school assessments including settled dust and air sampling for allergen, mold, air pollution, and inspection data are collected twice during the academic school year and one home dust sample linked to the enrolled student. Clinical outcomes are measured every 3 months during the academic school year. Conclusion The overall goal of SICAS is to complete the first study of its kind to better understand school-specific urban environmental factors on childhood asthma morbidity. We also discuss the unique challenges related to school-based urban research and lessons being learned from recruiting such a cohort.
Background Most studies of indoor allergens have focused on the home environment. However, schools may be an important site of allergen exposure for children with asthma. We compared school allergen exposure to home exposure in a cohort of children with asthma. Correlations between settled dust and airborne allergen levels in classrooms were examined. Methods Settled dust and airborne samples from 12 inner-city schools were analyzed for indoor allergens using multiplex array technology (MARIA). School samples were linked to students with asthma enrolled in the School Inner-City Asthma Study (SICAS). Settled dust samples from students’ bedrooms were analyzed similarly. Results From schools, 229 settled dust and 197 airborne samples were obtained. From homes, 118 settled dust samples were obtained. Linear mixed regression models of log-transformed variables showed significantly higher settled dust levels of mouse, cat and dog allergens in schools than homes (545% higher for Mus m 1, estimated absolute difference 0.55 μg/g, p<0.0001; 198% higher for Fel d 1, estimated absolute difference 0.13 μg/g, p=0.0033; and 144% higher for Can f 1, estimated absolute difference 0.05 μg/g, p=0.0008). Airborne and settled dust Mus m 1 levels in classrooms were moderately correlated (r=0.48; p< 0.0001). There were undetectable to very low levels of cockroach and dust mite allergens in both homes and schools. Conclusions Mouse allergen levels in schools were substantial. In general, cat and dog allergen levels were low, but detectable, and were higher in schools. Aerosolization of mouse allergen in classrooms may be a significant exposure for students. Further studies are needed to evaluate the effect of indoor allergen exposure in schools on asthma morbidity in students with asthma.
Objective The forced expiratory volume in one second (FEV1), felt to be an objective measure of airway obstruction, is often normal in asthmatic children. The forced expiratory flow between 25% and 75% of vital capacity (FEF25-75) reflects small airway patency and has been found to be reduced in children with asthma. The aim of this study was to determine if FEF25-75 is associated with increased childhood asthma severity and morbidity in the setting of a normal FEV1, and to determine if bronchodilator responsiveness (BDR) as defined by FEF25-75 identifies more childhood asthmatics than does BDR defined by FEV1. Methods The Children’s Hospital Boston Pulmonary Function Test database was queried and the most recent spirometry result was retrieved for 744 children diagnosed with asthma between 10–18 years of age between October 2000 and October 2010. Electronic medical records in the 1 year prior and the 1 year following the date of spirometry were examined for asthma severity (mild, moderate or severe) and morbidity outcomes for three age, race and gender-matched subgroups: group A (n= 35) had a normal FEV1, FEV1/FVC and FEF25-75; Group B (n= 36) had solely a diminished FEV1/FVC; and Group C (n=37) had a normal FEV1, low FEV1/FVC and low FEF25-75. Morbidity outcomes analyzed included the presence of hospitalization, emergency department visit, intensive care unit admission, asthma exacerbation, and systemic steroid use. Results Subjects with a low FEF25-75 (Group C) had nearly 3 times the odds (OR 2.8, p<0.01) of systemic corticosteroid use and 6 times the odds of asthma exacerbations (OR 6.3, p>0.01) compared with those who had normal spirometry (Group A). Using FEF25-75 to define bronchodilator responsiveness identified 53% more subjects with asthma than did using a definition based on FEV1. Conclusions A low FEF25-75 in the setting of a normal FEV1 is associated with increased asthma severity, systemic steroid use and asthma exacerbations in children. In addition, using the percent change in FEF25-75 from baseline may be helpful in identifying bronchodilator responsiveness in asthmatic children with a normal FEV1.
BACKGROUND Asthma exacerbations occur frequently despite the regular use of asthma-controller therapies, such as inhaled glucocorticoids. Clinicians commonly increase the doses of inhaled glucocorticoids at early signs of loss of asthma control. However, data on the safety and efficacy of this strategy in children are limited. METHODS We studied 254 children, 5 to 11 years of age, who had mild-to-moderate persistent asthma and had had at least one asthma exacerbation treated with systemic glucocorticoids in the previous year. Children were treated for 48 weeks with maintenance low-dose inhaled glucocorticoids (fluticasone propionate at a dose of 44 μg per inhalation, two inhalations twice daily) and were randomly assigned to either continue the same dose (low-dose group) or use a quintupled dose (high-dose group; fluticasone at a dose of 220 μg per inhalation, two inhalations twice daily) for 7 days at the early signs of loss of asthma control (“yellow zone”). Treatment was provided in a double-blind fashion. The primary outcome was the rate of severe asthma exacerbations treated with systemic glucocorticoids. RESULTS The rate of severe asthma exacerbations treated with systemic glucocorticoids did not differ significantly between groups (0.48 exacerbations per year in the high-dose group and 0.37 exacerbations per year in the low-dose group; relative rate, 1.3; 95% confidence interval, 0.8 to 2.1; P = 0.30). The time to the first exacerbation, the rate of treatment failure, symptom scores, and albuterol use during yellow-zone episodes did not differ significantly between groups. The total glucocorticoid exposure was 16% higher in the high-dose group than in the low-dose group. The difference in linear growth between the high-dose group and the low-dose group was −0.23 cm per year (P = 0.06). CONCLUSIONS In children with mild-to-moderate persistent asthma treated with daily inhaled glucocorticoids, quintupling the dose at the early signs of loss of asthma control did not reduce the rate of severe asthma exacerbations or improve other asthma outcomes and may be associated with diminished linear growth. (Funded by the National Heart, Lung, and Blood Institute; STICS ClinicalTrials.gov number, NCT02066129.)
IMPORTANCE Home aeroallergen exposure is associated with increased asthma morbidity in children, yet little is known about the contribution of school aeroallergen exposures to such morbidity.OBJECTIVE To evaluate the effect of school-specific aeroallergen exposures on asthma morbidity among students, adjusting for home exposures. DESIGN, SETTING, AND PARTICIPANTSThe School Inner-City Asthma Study was a prospective cohort study evaluating 284 students aged 4 to 13 years with asthma who were enrolled from 37 inner-city elementary schools in the northeastern United States between March 1, 2008, and August 31, 2013. Enrolled students underwent baseline clinical evaluations before the school year started and were then observed clinically for 1 year. During that same school year, classroom and home dust samples linked to the students were collected and analyzed for common indoor aeroallergens. Associations between school aeroallergen exposure and asthma outcomes during the school year were assessed, adjusting for home exposures.EXPOSURES Indoor aeroallergens, including rat, mouse, cockroach, cat, dog, and dust mites, measured in dust samples collected from inner-city schools. MAIN OUTCOMES AND MEASURESThe primary outcome was maximum days in the past 2 weeks with asthma symptoms. Secondary outcomes included well-established markers of asthma morbidity, including asthma-associated health care use and lung function, measured by forced expiratory volume in 1 second. RESULTS Among 284 students (median age, 8 years [interquartile range, 6-9 years]; 148 boys and 136 girls), exposure to mouse allergen was detected in 441 (99.5%) of 443 school dust samples, cat allergen in 420 samples (94.8%), and dog allergen in 366 samples (82.6%). Levels of mouse allergen in schools were significantly higher than in students' homes (median settled dust level, 0.90 vs 0.14 μg/g; P < .001). Exposure to higher levels of mouse allergen in school (comparing 75th with 25th percentile) was associated with increased odds of having an asthma symptom day (odds ratio, 1.27; 95% CI, 1.05-1.54; P = .02) and 4.0 percentage points lower predicted forced expiratory volume in 1 second (95% CI, -6.6 to -1.5; P = .002). This effect was independent of allergic sensitization. None of the other indoor aeroallergens were associated with worsening asthma outcomes. CONCLUSIONS AND RELEVANCEIn this study of inner-city students with asthma, exposure to mouse allergen in schools was associated with increased asthma symptoms and decreased lung function. These findings demonstrate that the school environment is an important contributor to childhood asthma morbidity. Future school-based environmental interventions may be beneficial for this important public health problem.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers