Interest in sebaceous gland physiology and its diseases is rapidly increasing. We provide a summarized update of the current knowledge of the pathobiology of acne vulgaris and new treatment concepts that have emerged in the last 3 years (2005)(2006)(2007)(2008). We have tried to answer questions arising from the exploration of sebaceous gland biology, hormonal factors, hyperkeratinization, role of bacteria, sebum, nutrition, cytokines and toll-like receptors (TLRs). Sebaceous glands play an important role as active participants in the innate immunity of the skin. They produce neuropeptides, excrete antimicrobial peptides and exhibit characteristics of stem cells. Androgens affect sebocytes and infundibular keratinocytes in a complex manner influencing cellular differentiation, proliferation, lipogenesis and comedogenesis. Retention hyperkeratosis in closed comedones and inflammatory papules is attributable to a disorder of terminal keratinocyte differentiation. Propionibacterium acnes, by acting on TLR-2, may stimulate the secretion of cytokines, such as interleukin (IL)-6 and IL-8 by follicular keratinocytes and IL-8 and -12 in macrophages, giving rise to inflammation. Certain P. acnes species may induce an immunological reaction by stimulating the production of sebocyte and keratinocyte antimicrobial peptides, which play an important role in the innate immunity of the follicle. Qualitative changes of sebum lipids induce alteration of keratinocyte differentiation and induce IL-1 secretion, contributing to the development of follicular hyperkeratosis. High glycemic load food and milk may induce increased tissue levels of 5a-dihydrotestosterone. These new aspects of acne pathogenesis lead to the considerations of possible customized therapeutic regimens. Current research is expected to lead to innovative treatments in the near future. Biology of sebaceous glandsThe sebaceous gland is a holocrine gland, and its secretion is formed by the complete disintegration of the glandular cells. Excreting sebum is the major function of sebaceous glands (1), and increased sebum excretion is a major concurrent event that parallels the development of acne lesions. With the development of human sebaceous gland experimental models for in vitro studies (2-5), considerable progress has been made in our understanding of many new
Sebaceous glands may be involved in a pathway conceptually similar to that of the hypothalamic-pituitary-adrenal (HPA) axis. Such a pathway has been described and may occur in human skin and lately in the sebaceous glands because they express neuropeptide receptors. Corticotropin-releasing hormone (CRH) is the most proximal element of the HPA axis, and it acts as central coordinator for neuroendocrine and behavioral responses to stress. To further examine the probability of an HPA equivalent pathway, we investigated the expression of CRH, CRH-binding protein (CRH-BP), and CRH receptors (CRH-R) in SZ95 sebocytes in vitro and their regulation by CRH and several other hormones. CRH, CRH-BP, CRH-R1, and CRH-R2 were detectable in SZ95 sebocytes at the mRNA and protein levels: CRH-R1 was the predominant type (CRH-R1͞CRH-R2 ؍ 2). CRH was biologically active on human sebocytes: it induced biphasic increase in synthesis of sebaceous lipids with a maximum stimulation at 10 ؊7 M and up-regulated mRNA levels of 3-hydroxysteroid dehydrogenase͞⌬ 5-4 isomerase, although it did not affect cell viability, cell proliferation, or IL-1-induced IL-8 release. CRH, dehydroepiandrosterone, and 17-estradiol did not modulate CRH-R expression, whereas testosterone at 10 ؊7 M down-regulated CRH-R1 and CRH-R2 mRNA expression at 6 to 24 h, and growth hormone (GH) switched CRH-R1 mRNA expression to CRH-R2 at 24 h. Based on these findings, CRH may be an autocrine hormone for human sebocytes that exerts homeostatic lipogenic activity, whereas testosterone and growth hormone induce CRH negative feedback. The findings implicate CRH in the clinical development of acne, seborrhea, androgenetic alopecia, skin aging, xerosis, and other skin disorders associated with alterations in lipid formation of sebaceous origin.
Secreted aspartic proteinases (Saps) are important virulence factors during Candida albicans mucosal or disseminated infections. A differential expression of individual SAP genes has been shown previously in a model of oral candidosis based on reconstituted human epithelium (RHE), and in the oral cavity of patients. In this study, the ultrastructural localization of distinct groups of Sap isoenzymes expressed during RHE infection was shown by immunoelectron microscopy using specific polyclonal antibodies directed against the gene products of SAP1‐3 and SAP4‐6. Large amounts of Sap1‐3 antigen were found within C. albicans yeast and hyphal cell walls, often predominantly in close contact with epithelial cells, whereas lower quantities of Sap4‐6 were detected in hyphal cells. To elucidate the relevance of the expressed Saps during oral infections, we examined the effect of the aspartic proteinase inhibitor, pepstatin A, during infection of the RHE. The extent of lesions caused by the strain SC5314 was found to be strongly reduced by the inhibitor, indicating that proteinase activity contributes to tissue damage in this model. To clarify which of the SAP genes are important for tissue necrosis, the histology of RHE infection with Δsap1, Δsap2, Δsap3, Δsap4‐6 and three Δsap1/3 double mutants were examined. Although tissue damage was not blocked completely with these mutants, an attenuated phenotype was observed for each of the single sap null mutants, and was more strongly attenuated in the Δsap1/3 double null mutants. In contrast, the lesions caused by the Δsap4‐6 triple mutant were at least as severe as those caused by SC5314. During infection with the mutants, we observed that the SAP gene expression pattern of the Δsap1 and the Δsap1/3 mutants was altered in comparison with the wild‐type strain. Expression of SAP5 was observed only during infection with the Δsap1/3 mutant, whereas upregulation of SAP2 and SAP8 transcripts was observed in the Δsap1 and the Δsap1/3 mutants. These results suggest that Sap1‐3, but not Sap4‐6, contribute to tissue damage in this model. Furthermore, C. albicans may compensate for the deletion of certain SAP genes by upregulation of alternative SAP genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.