We perform a large-scale RNA sequencing study to experimentally identify genes that are downregulated by 25 miRNAs. This RNA-seq dataset is combined with public miRNA target binding data to systematically identify miRNA targeting features that are characteristic of both miRNA binding and target downregulation. By integrating these common features in a machine learning framework, we develop and validate an improved computational model for genome-wide miRNA target prediction. All prediction data can be accessed at miRDB (http://mirdb.org).Electronic supplementary materialThe online version of this article (10.1186/s13059-019-1629-z) contains supplementary material, which is available to authorized users.
Previous studies on the functional analysis of the human vascular endothelial growth factor (VEGF) promoter using the full-length VEGF promoter reporter revealed that the proximal 36-bp region (À85 to À50 relative to transcription initiation site) is essential for basal or inducible VEGF promoter activity in several human cancer cells. This region consists of a polypurine (guanine) tract that contains four runs of at least three contiguous guanines separated by one or more bases, thus conforming to a general motif capable of forming an intramolecular Gquadruplex. Here, we show that the G-rich strand in this region is able to form an intramolecular propeller-type parallel-stranded G-quadruplex structure in vitro by using the electrophoretic mobility shift assay, dimethyl sulfate footprinting technique, the DNA polymerase stop assay, circular dichroism spectroscopy, and computer-aided molecular modeling. Two well-known G-quadruplexinteractive agents, TMPyP4 and Se2SAP, stabilize Gquadruplex structures formed by this sequence in the presence of a potassium ion, although Se2SAP is at least 10-fold more effective in binding to the G-quadruplex than TMPyP4. Between these two agents, Se2SAP better suppresses VEGF transcription in different cancer cell lines, including HEC1A and MDA-MB-231. Collectively, our results provide evidence that specific G-quadruplex structures can be formed in the VEGF promoter region, and that the transcription of this gene can be controlled by ligand-mediated G-quadruplex stabilization. Our results also provide further support for the idea that G-quadruplex structures may play structural roles in vivo and therefore might provide insight into novel methodologies for rational drug design. [Mol Cancer Ther 2008;7(4):880 -9]
The CRISPR/Cas9 system has been rapidly adopted for genome editing. However, one major issue with this system is the lack of robust bioinformatics tools for design of single guide RNA (sgRNA), which determines the efficacy and specificity of genome editing. To address this pressing need, we analyze CRISPR RNA-seq data and identify many novel features that are characteristic of highly potent sgRNAs. These features are used to develop a bioinformatics tool for genome-wide design of sgRNAs with improved efficiency. These sgRNAs as well as the design tool are freely accessible via a web server, WU-CRISPR (http://crispr.wustl.edu).
Background
The CRISPR/Cas9 system has been rapidly adopted for genome editing. However, one major issue with this system is the lack of robust bioinformatics tools for design of single guide RNA (sgRNA), which determines the efficacy and specificity of genome editing. To address this pressing need, we analyze CRISPR RNA-seq data and identify many novel features that are characteristic of highly potent sgRNAs. These features are used to develop a bioinformatics tool for genome-wide design of sgRNAs with improved efficiency. These sgRNAs as well as the design tool are freely accessible via a web server, WU-CRISPR (http://crispr.wustl.edu).Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0784-0) contains supplementary material, which is available to authorized users.
As a subunit of a ubiquitin ligase, Skp2 is implicated in facilitating cell cycle progression via degradation of various protein targets. We report here that Skp2 is rapidly degraded following cellular stimulation by the cytokine transforming growth factor  (TGF-) and that this degradation stabilizes the cell cycle arrest protein p27. The Skp2 degradation is mediated by Cdh1-anaphase-promoting complex (APC), as shown by depletion of Cdh1 with small interfering RNA, and by reconstitution of ubiquitylation reactions in a purified system. Blockage of Skp2 degradation greatly reduces TGF--induced cell cycle arrest, as does expression of a nondegradable Skp2 mutant. Furthermore, we demonstrate that TGF--induced Skp2 degradation is mediated by the Smad cascade. The degradation of Skp2 stabilizes p27, thereby ensuring TGF--induced cell cycle arrest. These results identify a novel mechanism for tumor suppression by TGF- and explain why dysfunction of APC in the TGF- pathway in responsive cells is associated with cancer.
Recent studies have shown a critical function for the ubiquitin-proteasome system (UPS) in regulating the signalling network for DNA damage responses and DNA repair. To search for new UPS targets in the DNA damage signalling pathway, we have carried out a non-biased assay to identify fast-turnover proteins induced by various types of genotoxic stress. This endeavour led to the identification of Rad17 as a protein exhibiting a distinctive pattern of upregulation followed by subsequent degradation after exposure to UV radiation in human primary cells. Our characterization showed that UV-induced Rad17 oscillation is mediated by Cdh1/APC, a ubiquitin-protein ligase. Studies using a degradation-resistant Rad17 mutant demonstrated that Rad17 stabilization prevents the termination of checkpoint signalling, which in turn attenuates the cellular re-entry into cell-cycle progression. The findings provide an insight into how the proteolysis of Rad17 by Cdh1/APC regulates the termination of checkpoint signalling and the recovery from genotoxic stress.
Early response assessment with serum SCCA is a powerful prognostic tool. These findings suggest that escalation of therapy in patients with elevated or sustained serum SCCA and molecular targeting of SCCA1 should be considered.
Abrogated entry into S phase is a common hallmark of cancer cells. Skp2, a subunit of ubiquitin ligase, is critical for regulating the G(1)/S transition. Uncontrolled Skp2 activity is detected frequently in human tumors, often correlated with poor prognosis. Current studies have suggested that the regulation of Skp2 turnover is mediated by another critical ubiquitin ligase, the anaphase-promoting complex (APC), in association with its substrate-specific factor Cdh1. To dissect the potential role of Cdh1/APC in tumorigenesis through the degradation of Skp2, we analyzed the Cdh1/APC-Skp2-p27 axis in colorectal tumorigenesis using a human tumor array and biochemical analyses. Our results show that the percentage of Cdh1- and p27-positive samples in colon cancer tissues was significantly lower than that in adjacent nonmalignant tissue. Conversely, the percentage of Skp2-positive colon cancer samples was significantly higher than that in normal tissue. Furthermore, results from clinicopathological analysis revealed that elevated Cdh1 expression was associated with lower histological grade tumors. In addition, depletion of Cdh1 by RNA interference in nonmalignant colon cells resulted in increased cellular proliferation, whereas knockdown of Skp2 significantly suppressed cancer cell growth. Our result suggests a pathological correlation between Skp2 and Cdh1/APC in colorectal cancer. Thus, Cdh1 may function as a component in tumor suppression via proteolysis of Skp2 in colorectal tumorigenesis and may serve as a prognostic marker in colon cancer patients.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.