Results are presented from searches for the standard model Higgs boson in proton-proton collisions at root s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb(-1) at 7 TeV and 5.3 fb(-1) at 8 TeV. The search is performed in five decay modes: gamma gamma, ZZ, W+W-, tau(+)tau(-), and b (b) over bar. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, gamma gamma and ZZ; a fit to these signals gives a mass of 125.3 +/- 0.4(stat.) +/- 0.5(syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved
The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
SummaryGene expression is a multistep process that involves transcription, translation and turnover of mRNAs and proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a genome-wide scale. Here, we simultaneously measured mRNA and protein abundance and turnover by parallel metabolic pulse labeling for more than 5,000 genes in mammalian cells. While mRNA and protein levels correlated better than previously thought, corresponding half-lives showed no correlation. Employing a quantitative model we obtain the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein stabilities shared functional properties, suggesting that half-lives evolved under energetic and dynamic constraints. Quantitative information about all stages of gene expression obtained in this study provides a rich resource and helps understanding the underlying design principles.
Preclinical mouse models suggest that the gut microbiome modulates tumor response to checkpoint blockade immunotherapy; however, this has not been well-characterized in human cancer patients. Here we examined the oral and gut microbiome of melanoma patients undergoing anti–programmed cell death 1 protein (PD-1) immunotherapy (n = 112). Significant differences were observed in the diversity and composition of the patient gut microbiome of responders versus nonresponders. Analysis of patient fecal microbiome samples (n = 43, 30 responders, 13 nonresponders) showed significantly higher alpha diversity (P < 0.01) and relative abundance of bacteria of the Ruminococcaceae family (P < 0.01) in responding patients. Metagenomic studies revealed functional differences in gut bacteria in responders, including enrichment of anabolic pathways. Immune profiling suggested enhanced systemic and antitumor immunity in responding patients with a favorable gut microbiome as well as in germ-free mice receiving fecal transplants from responding patients. Together, these data have important implications for the treatment of melanoma patients with immune checkpoint inhibitors.
Currently, there are no approved specific antiviral agents for novel coronavirus disease 2019 . In this study, 10 severe patients confirmed by real-time viral RNA test were enrolled prospectively. One dose of 200 mL of convalescent plasma (CP) derived from recently recovered donors with the neutralizing antibody titers above 1:640 was transfused to the patients as an addition to maximal supportive care and antiviral agents. The primary endpoint was the safety of CP transfusion. The second endpoints were the improvement of clinical symptoms and laboratory parameters within 3 d after CP transfusion. The median time from onset of illness to CP transfusion was 16.5 d. After CP transfusion, the level of neutralizing antibody increased rapidly up to 1:640 in five cases, while that of the other four cases maintained at a high level (1:640). The clinical symptoms were significantly improved along with increase of oxyhemoglobin saturation within 3 d. Several parameters tended to improve as compared to pretransfusion, including increased lymphocyte counts (0.65 × 10 9 /L vs. 0.76 × 10 9 /L) and decreased C-reactive protein (55.98 mg/L vs. 18.13 mg/L). Radiological examinations showed varying degrees of absorption of lung lesions within 7 d. The viral load was undetectable after transfusion in seven patients who had previous viremia. No severe adverse effects were observed. This study showed CP therapy was well tolerated and could potentially improve the clinical outcomes through neutralizing viremia in severe COVID-19 cases. The optimal dose and time point, as well as the clinical benefit of CP therapy, needs further investigation in larger well-controlled trials.
microRNAs (miRNAs) are a large class of small non-coding RNAs which post-transcriptionally regulate the expression of a large fraction of all animal genes and are important in a wide range of biological processes. Recent advances in high-throughput sequencing allow miRNA detection at unprecedented sensitivity, but the computational task of accurately identifying the miRNAs in the background of sequenced RNAs remains challenging. For this purpose, we have designed miRDeep2, a substantially improved algorithm which identifies canonical and non-canonical miRNAs such as those derived from transposable elements and informs on high-confidence candidates that are detected in multiple independent samples. Analyzing data from seven animal species representing the major animal clades, miRDeep2 identified miRNAs with an accuracy of 98.6–99.9% and reported hundreds of novel miRNAs. To test the accuracy of miRDeep2, we knocked down the miRNA biogenesis pathway in a human cell line and sequenced small RNAs before and after. The vast majority of the >100 novel miRNAs expressed in this cell line were indeed specifically downregulated, validating most miRDeep2 predictions. Last, a new miRNA expression profiling routine, low time and memory usage and user-friendly interactive graphic output can make miRDeep2 useful to a wide range of researchers.
We present models for the optical functions of 11 metals used as mirrors and contacts in optoelectronic and optical devices: noble metals (Ag, Au, Cu), aluminum, beryllium, and transition metals (Cr, Ni, Pd, Pt, Ti, W). We used two simple phenomenological models, the Lorentz-Drude (LD) and the Brendel-Bormann (BB), to interpret both the free-electron and the interband parts of the dielectric response of metals in a wide spectral range from 0.1 to 6 eV. Our results show that the BB model was needed to describe appropriately the interband absorption in noble metals, while for Al, Be, and the transition metals both models exhibit good agreement with the experimental data. A comparison with measurements on surface normal structures confirmed that the reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers