Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pose estimation, etc. Crowd gathering at various places like hospitals, parks, stadiums, airports, cultural and religious points are usually monitored by Close Circuit Television (CCTV) cameras. The drawbacks of CCTV cameras are: limited area coverage, installation problems, movability, high power consumption and constant monitoring by the operators. Therefore, many researchers have turned towards computer vision and machine learning that have overcome these issues by minimizing the need of human involvement. This review is aimed to categorize, analyze as well as provide the latest development and performance evolution in crowd monitoring using different machine learning techniques and methods that are published in journals and conferences over the past five years.
R. C. Martin and others have defined package cohesion metrics. Martin has also developed package cohesion principles that can help developers' partition classes into packages. Careful analysis of these cohesion principles indicates that cohesion is multifaceted. Based on these principles, in this paper we introduce two types or aspects of package cohesion. Thus, we are introducing a package cohesion classification scheme. Further, we define a new metric for each type of cohesion to assess to what extent the principles are followed during software design. The proposed metrics should be useful in designing software that is maintainable and reusable. Additionally, we show how the new metrics can be customized based on expert opinion and field needs. The initial results of the two metrics encourage further future work.
OBJECTIVE: This study aims to employ the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of novel coronavirus (COVID-19) infected disease. METHOD: This study applied transfer learning method to develop deep learning models for detecting COVID-19 disease. Three existing state-of-the-art deep learning models namely, Inception ResNetV2, InceptionNetV3 and NASNetLarge, were selected and fine-tuned to automatically detect and diagnose COVID-19 disease using chest X-ray images. A dataset involving 850 images with the confirmed COVID-19 disease, 500 images of community-acquired (non-COVID-19) pneumonia cases and 915 normal chest X-ray images was used in this study. RESULTS: Among the three models, InceptionNetV3 yielded the best performance with accuracy levels of 98.63% and 99.02% with and without using data augmentation in model training, respectively. All the performed networks tend to overfitting (with high training accuracy) when data augmentation is not used, this is due to the limited amount of image data used for training and validation. CONCLUSION: This study demonstrated that a deep transfer learning is feasible to detect COVID-19 disease automatically from chest X-ray by training the learning model with chest X-ray images mixed with COVID-19 patients, other pneumonia affected patients and people with healthy lungs, which may help doctors more effectively make their clinical decisions. The study also gives an insight to how transfer learning was used to automatically detect the COVID-19 disease. In future studies, as the amount of available dataset increases, different convolution neutral network models could be designed to achieve the goal more efficiently.
The agricultural production rate plays a pivotal role in the economic development of a country. However, plant diseases are the most significant impediment to the production and quality of food. The identification of plant diseases at an early stage is crucial for global health and wellbeing. The traditional diagnosis process involves visual assessment of an individual plant by a pathologist through on-site visits. However, manual examination for crop diseases is restricted because of less accuracy and the small accessibility of human resources. To tackle such issues, there is a demand to design automated approaches capable of efficiently detecting and categorizing numerous plant diseases. Precise identification and classification of plant diseases is a tedious job due because of the occurrence of low-intensity information in the image background and foreground, the huge color resemblance in the healthy and diseased plant areas, the occurrence of noise in the samples, and changes in the position, chrominance, structure, and size of plant leaves. To tackle the above-mentioned problems, we have introduced a robust plant disease classification system by introducing a Custom CenterNet framework with DenseNet-77 as a base network. The presented method follows three steps. In the first step, annotations are developed to get the region of interest. Secondly, an improved CenterNet is introduced in which DenseNet-77 is proposed for deep keypoints extraction. Finally, the one-stage detector CenterNet is used to detect and categorize several plant diseases. To conduct the performance analysis, we have used the PlantVillage Kaggle database, which is the standard dataset for plant diseases and challenges in terms of intensity variations, color changes, and differences found in the shapes and sizes of leaves. Both the qualitative and quantitative analysis confirms that the presented method is more proficient and reliable to identify and classify plant diseases than other latest approaches.
Plant disease automation in agriculture science is the primary concern for every country, as the food demand is increasing at a fast rate due to an increase in population. Moreover, the increased use of technology today has increased the efficacy and accuracy of detecting diseases in plants and animals. The detection process marks the beginning of a series of activities to fight the diseases and reduce their spread. Some diseases are also transmitted between animals and human beings, making it hard to fight them. For many years, scientists have researched how to deal with the common diseases that affect humans and plants. However, there are still many parts of the detection and discovery process that have not been completed. The technology used in medical procedures has not been adequate to detect all diseases on time, and that is why some diseases turn out to become pandemics because they are hard to detect on time. Our focus is to clarify the details about the diseases and how to detect them promptly with artificial intelligence. We discuss the use of machine learning and deep learning to detect diseases in plants automatically. Our study also focuses on how machine learning methods have been moved from conventional machine learning to deep learning in the last five years. Furthermore, different data sets related to plant diseases are discussed in detail. The challenges and problems associated with the existing systems are also presented.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers