To evaluate our diagnostic and therapeutic guidelines, clinical and long-term follow-up data of 219 patients with primary or secondary cutaneous CD30+ lymphoproliferative disorders were evaluated. The study group included 118 patients with lymphomatoid papulosis (LyP; group 1), 79 patients with primary cutaneous CD30+ large T-cell lymphoma (LTCL; group 2), 11 patients with CD30+ LTCL and skin and regional lymph node involvement (group 3), and 11 patients with secondary cutaneous CD30+ LTCL (group 4). Patients with LyP often did not receive any specific treatment, whereas most patients with primary cutaneous CD30+ LTCL were treated with radiotherapy or excision. All patients with skin-limited disease from groups 1 and 2 who were treated with multiagent chemotherapy had 1 or more skin relapses. The calculated risk for systemic disease within 10 years of diagnosis was 4% for group 1, 16% for group 2, and 20% for group 3 (after initial therapy). Disease-related 5-year-survival rates were 100% (group 1), 96% (group 2), 91% (group 3), and 24% (group 4), respectively. The results confirm the favorable prognoses of these primary cutaneous CD30+ lymphoproliferative disorders and underscore that LyP and primary cutaneous CD30+ lymphomas are closely related conditions. They also indicate that CD30+ LTCL on the skin and in 1 draining lymph node station has a good prognosis similar to that for primary cutaneous CD30+ LTCL without concurrent lymph node involvement. Multiagent chemotherapy is only indicated for patients with full-blown or developing extracutaneous disease; it is never or rarely indicated for patients with skin-limited CD30+ lymphomas.
With site, morphology, and number of tumors taken into account, guidelines for the management of PCLBCL are presented.
High levels of the p53 protein are immunohistochemically detectable in a majority of human nonmelanoma skin cancers and UVB-induced murine skin tumors. These increased protein levels are often associated with mutations in the conserved domains of the p53 gene. To investigate the timing of the p53 alterations in the process of UVB carcinogenesis, we used a well defined murine model (SKH:HR1 hairless mice) in (1), and from animal studies it appeared that the UVB part of the solar spectrum is the most carcinogenic (2). This has been substantiated by detection of mutations in the p53 tumor-suppressor gene in human SCCs (3) and basal cell carcinomas (4) that are characteristic for UVB radiation: i.e., mainly C T transitions at dipyrimidine sites among which are CC TT tandem mutations. There are indications that p53 is involved in the earliest stages of human nonmelanoma skin cancer. Recently, it has been reported that p53 mutations are already present in a benign precursor of SCC, actinic keratosis (5), and in skin adjacent to basal cell carcinomas (6). Furthermore, it has been shown that CC --TT tandem mutations in the p53 gene are detectable in biopsies from nonneoplastic skin of sun-exposed sites from Australian skin cancer patients (7).The suspected causal relationship between chronic UV exposure and p53 mutation and their relation to tumor forThe publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. 搂1734 solely to indicate this fact. mation can most directly and unequivocally be established in an animal model in which UV exposure is the only well controlled carcinogenic agent. A robust model is the SKH:HR1 hairless mouse for which the relationship between UVB exposure and carcinogenic response is well established (8, 9) and for which the pathogenesis of UVB-induced SCC shows close similarities with that of human SCC (10).Under physiological circumstances, the wild-type p53 protein has a very short half-life and is present in such small quantities that it is not immunohistochemically detectable (11,12). There are different pathways that lead to accumulation of the p53 protein up to immunohistochemically detectable levels. (i) DNA damage gives rise to a temporary accumulation of the wild-type p53 protein resulting in an arrest of the cell cycle assumed to prevent replication of damaged DNA (13). (ii) Missense mutations in the p53 gene in general lead to a dramatic increase in half-life of the p53 protein (11). In contrast to the transient accumulation of wild-type p53, the latter can lead to a constitutively high p53 level in the cell. We have recently reported that >75% of UVB-induced murine skin carcinomas show immunostaining with the p53-specific polyclonal antiserum CM-5, which was primarily confined to the proliferative compartments of the tumors. A substantial part of the p53-positive staining was associated with point mutations in the conserved domains of the p53 gene (14). Subsequ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.