Using a combination of the quartz crystal microbalance and surface plasmon resonance techniques, we have studied the spontaneous formation of supported lipid bilayers from small (approximately 25 nm) unilamellar vesicles. Together these experimental methods measure the amount of lipid adsorbed on the surface and the amount of water trapped by the lipid. With this approach, we have, for the first time, been able to observe in detail the progression from the adsorption of intact vesicles to rupture and bilayer formation. Monte Carlo simulations reproduce the data.
Using quartz crystal microbalance with dissipation and ellipsometry, we show that during adsorption of fibrinogen on evaporated tantalum films the saturation uptake increases with increasing root-mean-square roughness (from 2.0 to 32.9 nm) beyond the accompanying increase in surface area. This increase is attributed to a change in the geometrical arrangement of the fibrinogen molecules on the surface. For comparison, the adsorption of a nearly globular protein, bovine serum albumin, was studied as well. In this case, the adsorption was less influenced by the roughness. Simple Monte Carlo simulations taking into account surface roughness and the anisotropic shape of fibrinogen reproduce the experimentally observed trend.
Hydrogen-air mixtures are highly flammable. Hydrogen sensors are therefore of paramount importance for timely leak detection during handling. However, existing solutions do not meet the stringent performance targets set by stakeholders, while deactivation due to poisoning, for example by carbon monoxide, is a widely unsolved problem. Here we present a plasmonic metal-polymer hybrid nanomaterial concept, where the polymer coating reduces the apparent activation energy for hydrogen transport into and out of the plasmonic nanoparticles, while deactivation resistance is provided via a tailored tandem polymer membrane. In concert with an optimized volume-to-surface ratio of the signal transducer uniquely offered by nanoparticles, this enables subsecond sensor response times. Simultaneously, hydrogen sorption hysteresis is suppressed, sensor limit of detection is enhanced, and sensor operation in demanding chemical environments is enabled, without signs of long-term deactivation. In a wider perspective, our work suggests strategies for next-generation optical gas sensors with functionalities optimized by hybrid material engineering.
Physicochemical properties of nanoparticles may depend on their size and shape and are traditionally assessed in ensemble-level experiments, which accordingly may be plagued by averaging effects. These effects can be eliminated in single-nanoparticle experiments. Using plasmonic nanospectroscopy, we present a comprehensive study of hydride formation thermodynamics in individual Pd nanocrystals of different size and shape, and find corresponding enthalpies and entropies to be nearly size- and shape-independent. The hysteresis observed is significantly wider than in bulk, with details depending on the specifics of individual nanoparticles. Generally, the absorption branch of the hysteresis loop is size-dependent in the sub-30 nm regime, whereas desorption is size- and shape-independent. The former is consistent with a coherent phase transition during hydride formation, influenced kinetically by the specifics of nucleation, whereas the latter implies that hydride decomposition either occurs incoherently or via different kinetic pathways.
Planar lipid bilayers on solid supports mimic the fundamental structure of biological membranes and can be investigated using a wide range of surface-sensitive techniques. Despite these advantages, planar bilayer fabrication is challenging, and there are no simple universal methods to form such bilayers on diverse material substrates. One of the novel methods recently proposed and proven to form a planar bilayer on silicon dioxide involves lipid deposition in organic solvent and solvent exchange to influence the phase of adsorbed lipids. To scrutinize the specifics of this solvent-assisted lipid bilayer (SALB) formation method and clarify the limits of its applicability, we have developed a simplified, continuous solvent-exchange version to form planar bilayers on silicon dioxide, gold, and alkanethiol-coated gold (in the latter case, a lipid monolayer is formed to yield a hybrid bilayer) and varied the type of organic solvent and rate of solvent exchange. By tracking the SALB formation process with simultaneous quartz crystal microbalance-dissipation (QCM-D) and ellipsometry, it was determined that the acoustic, optical, and hydration masses along with the acoustic and optical thicknesses, measured at the end of the process, are comparable to those observed by employing conventional fabrication methods (e.g., vesicle fusion). As shown by QCM-D measurements, the obtained planar bilayers are highly resistant to protein adsorption, and several, but not all, water-miscible organic solvents could be successfully used in the SALB procedure, with isopropanol yielding particularly high-quality bilayers. In addition, fluorescence recovery after photobleaching (FRAP) measurements demonstrated that the coefficient of lateral lipid diffusion in the fabricated bilayers corresponds to that measured earlier in the planar bilayers formed by vesicle fusion. With increasing rate of solvent exchange, it was also observed that the bilayer became incomplete and a phenomenological model was developed in order to explain this feature. The results obtained allowed us to clarify and discriminate likely steps of the SALB formation process as well as determine the corresponding influence of organic solvent type and flow conditions on these steps. Taken together, the findings demonstrate that the SALB formation method can be adapted to a continuous solvent-exchange procedure that is technically minimal, quick, and efficient to form planar bilayers on solid supports.
A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher. Library of Congress Cata log1ng-1n-PublicatIon Data Zhdanov, V. P. (ViadlnMr Petrovlch) [Elenentarnye flz1ko-kh1nMchesk1e protsessy na poverkhnost1. English] Elenentary physlcochenlcal processes on solid surfaces / V.P. Zhadanov. p. en. -(Fundamental and applied catalysis) Translation of: Eleientarnye f1z1ko-kh1n1chesk1e protsessy na poverkhnost1. Includes bibliographical references and Index. ISBN 978-1-4899-2375-2 1. Solids-Surfaces. 2. Surfaces (Physics) 3. Surface cheelstry. I. Title. II. Series.
Employing rationally designed model systems with precise atom-by-atom particle size control, we demonstrate by means of combining noninvasive in situ indirect nanoplasmonic sensing and ex situ scanning transmission electron microscopy that monomodal size-selected platinum cluster catalysts on different supports exhibit remarkable intrinsic sintering resistance even under reaction conditions. The observed stability is related to suppression of Ostwald ripening by elimination of its main driving force via size-selection. This study thus constitutes a general blueprint for the rational design of sintering resistant catalyst systems and for efficient experimental strategies to determine sintering mechanisms. Moreover, this is the first systematic experimental investigation of sintering processes in nanoparticle systems with an initially perfectly monomodal size distribution under ambient conditions.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers