Abstract:The aim of this work is to develop a smart flexible sensor adapted to textile structures, able to measure their strain deformations. The sensors are "smart" because of their capacity to adapt to the specific mechanical properties of textile structures that are lightweight, highly flexible, stretchable, elastic, etc. Because of these properties, textile structures are continuously in movement and easily deformed, even under very low stresses. It is therefore important that the integration of a sensor does not modify their general behavior. The material used for the sensor is based on a thermoplastic elastomer (Evoprene)/carbon black nanoparticle composite, and presents general mechanical properties strongly compatible with the textile substrate. Two preparation techniques are investigated: the conventional melt-mixing process, and the solvent process which is found to be more adapted for this particular application. The preparation procedure is fully described, namely the optimization of the process in terms of filler concentration in which the percolation theory aspects have to be considered. The sensor is then integrated on a thin, lightweight Nylon fabric, and the electromechanical characterization is performed to demonstrate the adaptability and the correct functioning of the sensor as a strain gauge on the fabric. A normalized relative resistance is defined in order to characterize the electrical response of the sensor. Finally, the influence of environmental factors, such as temperature and atmospheric humidity, on the sensor performance is investigated. The results show that the sensor's electrical resistance is particularly affected by humidity. This behavior is discussed in terms of the sensitivity of the carbon black filler particles to the presence of water.
This review summarizes the recent developments and importance of wearable electronic textiles in the past decade. Wearable electronic textiles are an emerging interdisciplinary research area that requires new design approaches. This challenging interdisciplinary research field brings together specialists in electronics, information technology, microsystems, and textiles to make an innovation in the development of wearable electronic products. Wearable electronic textiles play a key role among various technologies (clothing, communication, information, healthcare monitoring, military, sensors, magnetic shielding, etc.). In this review, applications of wearable electronic textiles are described, including an investigation of their fabrication techniques. This review highlights the basic processes, possible applications, and main materials to build wearable E‐textiles and combines the fundamentals of E‐textiles for the readers who have different backgrounds. Moreover, reliability, reusability, and efficiency of wearable electronic textiles are discussed together with the opportunities and drawbacks of the wearable E‐textiles that are addressed in this review article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.