Spectrum sensing is critical in allowing the cognitive radio network, which will be used in the next generation of wireless communication systems. Several approaches, including cyclostationary process, energy detectors, and matching filters, have been suggested over the course of several decades. These strategies, on the other hand, have a number of disadvantages. Energy detectors have poor performance when the signal-to-noise ratio (SNR) is changing, cyclostationary detectors are very complicated, and matching filters need previous knowledge of the main user (PU) signals. Additionally, these strategies rely on thresholds under particular signal-noise model assumptions in addition to the thresholds, and as a result, the detection effectiveness of these techniques is wholly dependent on the accuracy of the sensor. In this way, one of the most sought-after difficulties among wireless researchers continues to be the development of a reliable and intelligent spectrum sensing technology. In contrast, multilayer learning models are not ideal for dealing with time-series data because of the large computational cost and high rate of misclassification associated with them. For this reason, the authors propose a hybrid combination of long short-term memory (LSTM) and extreme learning machines (ELM) to learn temporal features from spectral data and to exploit other environmental activity statistics such as energy, distance, and duty cycle duration for the improvement of sensing performance. The suggested system has been tested on a Raspberry Pi Model B+ and the GNU-radio experimental testbed, among other platforms.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers