In Brazil, malaria is prevalent in the Amazon region and these regions coincide with high prevalence of intestinal parasites but few studies explore the interaction between malaria and other parasites. Therefore, the present study evaluates changes in cytokine, chemokine, C-reactive protein, and nitric oxide (NO) concentrations in 264 individuals, comparing plasma from infected individuals with concurrent malaria and intestinal parasites to individuals with either malaria infection alone and uninfected. In the studied population 24% of the individuals were infected with Plasmodium and 18% coinfected with intestinal parasites. Protozoan parasites comprised the bulk of the intestinal parasites infections and subjects infected with intestinal parasites were more likely to have malaria. The use of principal component analysis and cluster analysis associated increased levels of IL-6, TNF-α, IL-10, and CRP and low levels of IL-17A predominantly with individuals with malaria alone and coinfected individuals. In contrast, low levels of almost all inflammatory mediators were associated predominantly with individuals uninfected while increased levels of IL-17A were associated predominantly with individuals with intestinal parasites only. In conclusion, our data suggest that, in our population, the infection with intestinal parasites (mainly protozoan) does not modify the pattern of cytokine production in individuals infected with P. falciparum and P. vivax.
The haematological changes and release of soluble mediators, particularly C-reactive protein (CRP) and nitric oxide (NO), during uncomplicated malaria have not been well studied, especially in Brazilian areas in which the disease is endemic. Therefore, the present study examined these factors in acute (day 0) and convalescent phase (day 15) patients infected with Plasmodium falciparum and Plasmodium vivax malaria in the Brazilian Amazon. Haematologic parameters were measured using automated cell counting, CRP levels were measured with ELISA and NO plasma levels were measured by the Griess reaction. Our data indicate that individuals with uncomplicated P. vivax and P. falciparum infection presented similar inflammatory profiles with respect to white blood cells, with high band cell production and a considerable degree of thrombocytopaenia during the acute phase of infection. Higher CRP levels were detected in acute P. vivax infection than in acute P. falciparum infection, while higher NO was detected in patients with acute and convalescent P. falciparum infections. Although changes in these mediators cannot predict malaria infection, the haematological aspects associated with malaria infection, especially the roles of platelets and band cells, need to be investigated further.
BackgroundCytokines play an important role in human immune responses to malaria and variation in their production may influence the course of infection and determine the outcome of the disease. The differential production of cytokines has been linked to single nucleotide polymorphisms in gene promoter regions, signal sequences, and gene introns. Although some polymorphisms play significant roles in susceptibility to malaria, gene polymorphism studies in Brazil are scarce.MethodsA population of 267 individuals from Brazilian Amazon exposed to malaria was genotyped for five single nucleotide polymorphisms (SNPs), IFNG + 874 T/A, IL10A-1082G/A, IL10A-592A/C, IL10A-819 T/C and NOS2A-954G/C. Specific DNA fragments were amplified by polymerase chain reaction, allowing the detection of the polymorphism genotypes. The polymorphisms IL10A-592A/C and IL10A-819 T/C were estimated by a single analysis due to the complete linkage disequilibrium between the two SNPs with D’ = 0.99. Plasma was used to measure the levels of IFN-γ and IL-10 cytokines by Luminex and nitrogen radicals by Griess reaction.ResultsNo differences were observed in genotype and allelic frequency of IFNG + 874 T/A and NOS2A-954G/C between positive and negative subjects for malaria infection. Interesting, the genotype NOS2A-954C/C was not identified in the study population. Significant differences were found in IL10A-592A/C and IL10A-819 T/C genotypes distribution, carriers of IL10A -592A/-819 T alleles (genotypes AA/TT + AC/TC) were more frequent among subjects with malaria than in negative subjects that presented a higher frequency of the variant C allele (p < 0.0001). The presence of the allele C was associated with low producer of IL-10 and low parasitaemia. In addition, the GTA haplotypes formed from combinations of investigated polymorphisms in IL10A were significantly associated with malaria (+) and the CCA haplotype with malaria (−) groups. The IL10A-1082G/A polymorphism showed high frequency of heterozygous AG genotype in the population, but it was not possible to infer any association of the polymorphism because their distribution was not in Hardy Weinberg equilibrium.ConclusionThis study shows that the IL10A-592A/C and IL10A-819 T/C polymorphisms were associated with malaria and decreased IL-10 levels and low parasite density suggesting that this polymorphism influence IL-10 levels and may influence in the susceptibility to clinical malaria.
BackgroundPolyparasitism is a common condition in humans but its impact on the host immune system and clinical diseases is still poorly understood. There are few studies of the prevalence and the effect of malaria-intestinal parasite co-infections in the immune response to malaria vaccine candidates. The present study determines whether the presence of malaria and intestinal parasites co-infection is associated with impaired IgG responses to Plasmodium vivax AMA-1 and MSP-119 in a rural population of the Brazilian Amazon.MethodsA cross-sectional survey was performed in a rural area of Rondonia State and 279 individuals were included in the present study. At recruitment, whole blood was collected and Plasmodium and intestinal parasites were detected by microscopy and molecular tests. Blood cell count and haemoglobin were also tested and antibody response specific to P. vivax AMA-1 and MSP-119 was measured in plasma by ELISA. The participants were grouped according to their infection status: singly infected with Plasmodium (M); co-infected with Plasmodium and intestinal parasites (CI); singly infected with intestinal parasites (IP) and negative (N) for both malaria and intestinal parasites.ResultsThe prevalence of intestinal parasites was significantly higher in individuals with malaria and protozoan infections were more prevalent. IgG antibodies to PvAMA-1 and/or PvMSP-119 were detected in 74 % of the population. The prevalence of specific IgG was similar for both proteins in all four groups and among the groups the lowest prevalence was in IP group. The cytophilic sub-classes IgG1 and IgG3 were predominant in all groups for PvAMA-1 and IgG1, IgG3 and IgG4 for PvMSP-119. In the case of non-cytophilic antibodies to PvAMA-1, IgG2 was significantly higher in IP and N group when compared to M and CI while IgG4 was higher in IP group.ConclusionsThe presence of intestinal parasites, mainly protozoans, in malaria co-infected individuals does not seem to alter the antibody immune responses to P. vivax AMA-1 and MSP-119. However, IgG response to both AMA1 and MSP1 were lower in individuals with intestinal parasites.
BackgroundBrazil has seen a great decline in malaria and the country is moving towards elimination. However, for eventual elimination, the control program needs efficient tools in order to monitor malaria exposure and transmission. In this study, we aimed to evaluate whether seroprevalence to the circumsporozoite protein (CSP) is a good tool for monitoring the exposure to and/or evaluating the burden and distribution of Plasmodium species in the Brazilian Amazon.MethodsCross-sectional surveys were conducted in a rural area of Porto Velho, Rondônia state. Parasite infection was detected by microscopy and polymerase chain reaction. Antibodies to the sporozoite CSP repeats of Plasmodium vivax, P. falciparum, and P. malariae (PvCS, PfCS, and PmCS) were detected using the enzyme-linked immunosorbent assay technique. Human leukocyte antigen (HLA)-DRB1 and DQB1 genes were typed using Luminex® xMAP® technology.ResultsThe prevalence of immunoglobulin G against P. vivax CSP peptide (62%) was higher than P. falciparum (49%) and P. malariae (46%) CSP peptide. Most of the studied individuals had antibodies to at least one of the three peptides (72%), 34% had antibodies to all three peptides and 28% were non-responders. Although the majority of the population was not infected at the time of the survey, 74.3% of parasite-negative individuals had antibodies to at least one of the CSPs. Importantly, among individuals carrying the haplotypes DRB1*04~DQB1*03, there was a significantly higher frequency of PfCS responders, and DRB1*16~DQB1*03 haplotype for PvCS and PfCS responders. In contrast, HLA-DRB1*01 and HLA-DQB1*05 allelic groups were associated with a lack of antibodies to P. vivax and P. falciparum CSP repeats, and the haplotype DRB1*01~DQB1*05 was also associated with non-responders, including non-responders to P. malariae.ConclusionsOur results show that in low transmission settings, naturally acquired antibody responses against the CSP repeats of P. vivax, P. falciparum, and P. malariae in a single cross-sectional study may not represent a valuable marker for monitoring recent malaria exposure, especially in an area with a high prevalence of P. vivax. Furthermore, HLA class II molecules play an important role in antibody response and require further study with a larger sample size. It will be of interest to consider HLA analysis when using serosurveillance to monitor malaria exposure among genetically diverse populations.Electronic supplementary materialThe online version of this article (10.1186/s40249-018-0428-1) contains supplementary material, which is available to authorized users.
This study aims to evaluate the potential of 15 Eucalyptus species essential oils as alternatives to clinical surface disinfectants with known association to antibiotic resistance. Four reference pathogenic bacteria were tested: Pseudomonas aeruginosa (ATCC10145), Escherichia coli (CECT434), Staphylococcus aureus (CECT976) and Listeria monocytogenes (ATCC15313). Gram-positive bacteria revealed higher sensitivity than Gram-negative. Essential oils from E. bosistoana, E. botryoides, E. camaldulensis, E. cinerea and E. citriodora showed bacterial inhibition for Gram-positive, even higher than with gentamicin and ciprofloxacin (positive controls). L. monocytogenes was the most sensitive and P. aeruginosa demonstrated resistance to all essential oils. The antimicrobial potential values were 6. 25, 6.25 and 12.5% for E. coli, S. aureus and L. monocytogenes, respectively. This study reveals that Eucalyptus essential oils may be useful in order to control pathogenic bacteria as potential complementary treatment or as disinfectants in clinical/hospital environments.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers