Drug distribution relies heavily on polymers, which also offer a variety of benefits like controlled release, targeted release, prolonged release, etc. Due to their low toxicity and great safety, biodegradable polymers are highly preferred. The exopolysaccharide known as pullulan is generated from a fungus known as Aureobasidium pullulan . It has many different qualities, including biodegradability, appropriate adhesion, antioxidant, film-forming capacity, blood compatibility, mucosal adhesion, etc. However, its application in the pharmaceutical industry is restricted by its insolubility in organic solvents, mechanical characteristics, and lack of macromolecule-carrying ability groups. This review provides an overview of the modifications made to pullulan, including periodate oxidation, etherification, esterification, sulfation, urethane derivatization, PEG incorporation, and cationization, to enhance its solubility in organic solvents, mechanical properties, pH sensitivity, drug delivery, anticoagulant, and antimicrobial properties. Pullulan has nine active hydroxyl groups in its structure that react chemically that can be used for physicochemical modification to produce pullulan derivatives. A key area of pullulan research has been pullulan modification, which has demonstrated enhanced solubility, pH-sensitive targeting, broadened horizons for delivery systems, anticoagulation, and antibacterial properties.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers