Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events. O NE of the primary strengths of the genus Drosophila as a model system has been the relative ease of generating detailed cytogenetic maps. Indeed, the first definitive mapping of genes to chromosomes Genetics 179: 1601-1655 ( July 2008) was performed in Drosophila melanogaster (Bridges 1916). The subsequent discovery of polytene chromosomes in the salivary glands in this same species (Painter 1934) and their codification into fine-structure genetic/ cytogenetic maps represents perhaps one of the first forays into ''genomics.'' Polytene maps (Bridges 1935;Lefevre 1976) provided an important genetic tool for mapping genes, for detecting genetic diversity within populations, and for inferring phylogenies among related species (Dobzhansky and Sturtevant 1938;Judd et al. 1972;Ashburner and Lemeunier 1976;Lemeunier and Ashburner 1976). Sturtevant and Tan (1937) laid the groundwork for comparative genomics when they established that genes within the chromosomal arms are conserved or syntenic among species. In an insightful melding of the gene mapping and evolutionary studies, H. J. Muller (1940) proposed that the genomes of Drosophila species were subdivided into a set of homologous elements represented by chromosome arms. What Muller (1940) noted, which was subsequently elaborated on by Sturtevant and Novitski (1941), was that the presumed homologs of identified mutant alleles within a chromosome arm of D. melanogaster were also confined to a single arm in other species within the genus where mapping data were available. Using D. melanogaster as a reference, Muller proposed that each of the five major chromosome arms plus the dot chromosome be given a letter designation (A-F) and that this nomenclature be used to identify equivalent linkage groups within the genus.The an...
In an endeavor to contribute to the comprehension of the evolution of transposable elements (TEs) in the genome of host species, we investigated the phylogenetic relationships of sequences homologous to the retrotransposon gypsy of Drosophila melanogaster in 19 species of Drosophila, in Scaptodrosophila latifasciaeformis, and in Zaprionus indianus. This phylogenetic study was based on approximately 500 base pairs of the env gene. Our analyses showed considerable discrepancy between the phylogeny of gypsy elements and the relationship of their host species, and they allow us to infer a complex evolutionary pattern that could include ancestral polymorphism, vertical transmission, and several cases of horizontal transmission.
We present a phylogenetic hypothesis for 72 '' Drosophila'' species, constructed through analysis from the paralogous alpha methyldopa (amd) and dopa decarboxylase (ddc) nuclear genes (encompassing a total of 2015 base pairs). Our data support the subdivision of the paraphyletic subgenus ''Drosophila'' into three main radiations (the immigrans-tripunctata, the virilis-repleta and the Hawaiian Drosophilidae), each of which is further subdivided to originate monophyletic Ôsub-radiationsÕ. Moreover, this study raises the possibility that the Zaprionus⁄Liodrosophila species encompass a fourth radiation within the subgenus '' Drosophila'' phylogeny and provides temporal estimates for each of the postulated divergence events.
Aiming to contribute to the knowledge of the evolutionary history of Errantivirus, a phylogenetic analysis of the env gene sequences of Errantivirus gypsy, gtwin, gypsy2, gypsy3, gypsy4 and gypsy6 was carried out in 33 Drosophilidae species. Most sequences were obtained from in silico searches in the Drosophila genomes. The complex evolutionary pattern reported by other authors for the gypsy retroelement was also observed in the present study, including vertical transmission, ancestral polymorphism, stochastic loss and horizontal transfer. Moreover, the elements gypsy2, gypsy3, gypsy4 and gypsy6 were shown to have followed an evolutionary model that is similar to gypsy. Fifteen new possible cases of horizontal transfer were suggested. The infectious potential of these elements may help elucidate the evolutionary scenario described in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.