S. Nishida and M. Shinya (1998) found that observers have only a limited ability to recover surface-reflectance properties under changes in surface shape. Our aim in the present study was to investigate how the degree of surface-reflectance constancy depends on the availability of information that may help to infer the reflectance and shape properties of surfaces. To this end, we manipulated the availability of (i) motion-induced information (static vs. dynamic presentation), (ii) disparity information (with the levels "monocular," "surface disparity," and "surface + highlight disparity"), and (iii) color information (grayscale stimuli vs. hue differences between diffuse and specular reflections). The task of the subjects was to match the perceived lightness and glossiness between two surfaces with different spatial frequency and amplitude by manipulating the diffuse component and the exponent of the Phong lighting model in one of the surfaces. Our results indicate that all three types of information improve the constancy of glossiness matches--both in isolation and in combination. The lightness matching data only revealed an influence of motion and color information. Our results indicate, somewhat counterintuitively, that motion information has a detrimental effect on lightness constancy.
Psychology moved beyond the stimulus response mapping of behaviorism by adopting an information processing framework. This shift from behavioral to cognitive science was partly inspired by work demonstrating that the concept of information could be defined and quantified (Shannon, 1948). This transition developed further from cognitive science into cognitive neuroscience, in an attempt to measure information in the brain. In the cognitive neurosciences, however, the term information is often used without a clear definition. This paper will argue that, if the formulation proposed by Shannon is applied to modern neuroimaging, then numerous results would be interpreted differently. More specifically, we argue that much modern cognitive neuroscience implicitly focuses on the question of how we can interpret the activations we record in the brain (experimenter-as-receiver), rather than on the core question of how the rest of the brain can interpret those activations (cortex-as-receiver). A clearer focus on whether activations recorded via neuroimaging can actually act as information in the brain would not only change how findings are interpreted but should also change the direction of empirical research in cognitive neuroscience.
We present evidence from asymmetric colour matching experiments which strongly suggests that uniform surrounds evoke induction effects of a very peculiar nature, not representative of colour induction effects in variegated surrounds. Given the widespread use of uniform surrounds in studies of colour vision, this finding is of interest in relation to a number of current research issues, such as contrast coding of colour, functionally equivalent surrounds and colour constancy. A framework that systematises the seemingly complex colour appearance changes induced by uniform surrounds is presented and its implications are discussed.
Variants of Metelli's episcotister model, which are based on additive color mixture, have been found to describe the luminance conditions for perceptual transparency very accurately. However, the findings in the chromatic domain are not that clear-cut, since there exist chromatic stimuli that conform to the additive model but do not appear transparent. We present evidence that such failures are of a systematic nature, and we propose an alternative psychophysical model based on subtractive color mixture. Results of a computer simulation revealed that this model approximately describes color changes that occur when a surface is covered by a filter. We present the results of two psychophysical experiments with chromatic stimuli, in which we directly compared the predictions of the additive model and the predictions of the new model. These results show that the color relations leading to the perception of a homogeneous transparent layer conform very closely to the predictions of the new model and deviate systematically from the predictions of the additive model.
In a popular magic routine known as “multiplying billiard balls”, magicians fool their audience by using an empty shell that the audience believes to be a complete ball. Here, we present some observations suggesting that the spectators do not merely entertain the intellectual belief that the balls are all solid, but rather automatically and immediately perceive them as such. Our observations demonstrate the surprising potency and genuinely perceptual origin of amodal volume completion.
In a well-known magic trick known as multiplying balls, conjurers fool their audience with the use of a semi-spherical shell, which the audience perceives as a complete ball [1]. Here, we report that this illusion persists even when observers touch the inside of the shell with their own finger. Even more intriguingly, this also produces an illusion of bodily self-awareness in which the finger feels shorter, as if to make space for the purely illusory volume of the visually completed ball. This observation provides strong evidence for the controversial and counterintuitive idea that our experience of the hidden backsides of objects is shaped by genuine perceptual representations rather than mere cognitive guesswork or imagery [2].
R. O. Brown and D. I. MacLeod (1997) observed that chromatic patches appear much more saturated against an equiluminant, uniform gray surround than against a chromatically variegated surround with the same space-average color. Using asymmetric color matching, we investigated what stimulus conditions are critical for the occurrence of this "gamut expansion effect." We found (a) that the effect diminishes rapidly with increasing color contrast between target and surround, (b) that the amount and the spatial distribution of color variance in the surround plays but a very limited role, (c) that the effect is mainly local, and (d) that basically the same effect can be obtained by comparing two uniform surrounds. These findings, particularly the latter, argue strongly against an explanation solely in terms of contrast adaptation. We suggest that the main features of our findings can be explained in terms of color scission.
When magicians perform spectacles that seem to defy the laws of nature, they do so by manipulating psychological reality. Hence, the principles underlying the art of conjuring are potentially of interest to psychological science. Here, we argue that perceptual and cognitive principles governing how humans experience hidden things and reason about them play a central role in many magic tricks. Different from tricks based on many other forms of misdirection, which require considerable skill on the part of the magician, many elements of these tricks are essentially self-working because they rely on automatic perceptual and cognitive processes. Since these processes are not directly observable, even experienced magicians may be oblivious to their central role in creating strong magical experiences and tricks that are almost impossible to debunk, even after repeated presentations. We delineate how insights from perceptual psychology provide a framework for understanding why these tricks work so well. Conversely, we argue that studying magic tricks that work much better than one intuitively would believe provides a promising heuristic for charting unexplored aspects of perception and cognition.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers