We present a mathematical programming-based method for model predictive control of cyber-physical systems subject to signal temporal logic (STL) specifications. We describe the use of STL to specify a wide range of properties of these systems, including safety, response and bounded liveness. For synthesis, we encode STL specifications as mixed integer-linear constraints on the system variables in the optimization problem at each step of a receding horizon control framework. We prove correctness of our algorithms, and present experimental results for controller synthesis for building energy and climate control.
We present a counterexample-guided inductive synthesis approach to controller synthesis for cyber-physical systems subject to signal temporal logic (STL) specifications, operating in potentially adversarial nondeterministic environments. We encode STL specifications as mixed integer-linear constraints on the variables of a discrete-time model of the system and environment dynamics, and solve a series of optimization problems to yield a satisfying control sequence. We demonstrate how the scheme can be used in a receding horizon fashion to fulfill properties over unbounded horizons, and present experimental results for reactive controller synthesis for case studies in building climate control and autonomous driving.
Abstract-We consider task and motion planning in complex dynamic environments for problems expressed in terms of a set of Linear Temporal Logic (LTL) constraints, and a reward function. We propose a methodology based on reinforcement learning that employs deep neural networks to learn low-level control policies as well as task-level option policies. A major challenge in this setting, both for neural network approaches and classical planning, is the need to explore future worlds of a complex and interactive environment. To this end, we integrate Monte Carlo Tree Search with hierarchical neural net control policies trained on expressive LTL specifications. This paper investigates the ability of neural networks to learn both LTL constraints and control policies in order to generate task plans in complex environments. We demonstrate our approach in a simulated autonomous driving setting, where a vehicle must drive down a road in traffic, avoid collisions, and navigate an intersection, all while obeying given rules of the road.
Robot control for tasks such as moving around obstacles or grasping objects has advanced significantly in the last few decades. However, controlling robots to perform complex tasks is still accomplished largely by highly trained programmers in a manual, time-consuming, and error-prone process that is typically validated only through extensive testing. Formal methods are mathematical techniques for reasoning about systems, their requirements, and their guarantees. Formal synthesis for robotics refers to frameworks for specifying tasks in a mathematically precise language and automatically transforming these specifications into correct-by-construction robot controllers or into a proof that the task cannot be done. Synthesis allows users to reason about the task specification rather than its implementation, reduces implementation error, and provides behavioral guarantees for the resulting controller. This article reviews the current state of formal synthesis for robotics and surveys the landscape of abstractions, specifications, and synthesis algorithms that enable it.
Abstract. Recent work in robotics has applied formal verification tools to automatically generate correct-by-construction controllers for autonomous robots. However, when it is not possible to create such a controller, these approaches do not provide the user with feedback on the source of failure, making the experience of debugging a specification somewhat ad hoc and unstructured, and a source of frustration for the user. This paper describes an extension to the LTLMoP toolkit for robot mission planning that encloses the control-generation process in a layer of automated reasoning to identify the cause of failure, and targets the users attention to flawed portions of the specification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.