Dietary restriction (DR) and reduced growth factor signaling both elevate resistance to oxidative stress, reduce macromolecular damage, and increase lifespan in model organisms. In rodents, both DR and decreased growth factor signaling reduce the incidence of tumors and slow down cognitive decline and aging. DR reduces cancer and cardiovascular disease and mortality in monkeys, and reduces metabolic traits associated with diabetes, cardiovascular disease and cancer in humans. Neoplasias and diabetes are also rare in humans with loss of function mutations in the growth hormone receptor. DR and reduced growth factor signaling may thus slow aging by similar, evolutionarily conserved, mechanisms. We review these conserved anti-aging pathways in model organisms, discuss their link to disease prevention in mammals, and consider the negative side effects that might hinder interventions intended to extend healthy lifespan in humans.
Fasting has been practiced for millennia, but only recently studies have shed light on its role in adaptive cellular responses that reduce oxidative damage and inflammation, optimize energy metabolism and bolster cellular protection. In lower eukaryotes, chronic fasting extends longevity in part by reprogramming metabolic and stress resistance pathways. In rodents intermittent or periodic fasting protects against diabetes, cancers, heart disease and neurodegeneration, while in humans it helps reduce obesity, hypertension, asthma and rheumatoid arthritis. Thus, fasting has the potential to delay aging and help prevent and treat diseases while minimizing the side effects caused by chronic dietary interventions.
The protein kinase Akt/protein kinase B (PKB) is implicated in insulin signaling in mammals and functions in a pathway that regulates longevity and stress resistance in Caenorhabditis elegans. We screened for long-lived mutants in nondividing yeast Saccharomyces cerevisiae and identified mutations in adenylate cyclase and SCH9, which is homologous to Akt/PKB, that increase resistance to oxidants and extend life-span by up to threefold. Stress-resistance transcription factors Msn2/Msn4 and protein kinase Rim15 were required for this life-span extension. These results indicate that longevity is associated with increased investment in maintenance and show that highly conserved genes play similar roles in life-span regulation in S. cerevisiae and higher eukaryotes.
Summary Prolonged fasting (PF) promotes stress resistance but its effects on longevity are poorly understood. We show that alternating PF and nutrient-rich medium extended yeast lifespan independently of established pro-longevity genes. In mice, four days of a diet that mimics fasting (FMD), developed to minimize the burden of PF, decreased the size of multiple organs/systems; an effect followed upon re-feeding by an elevated number of progenitor and stem cells and regeneration. Bi-monthly FMD cycles started at middle age extended longevity, lowered visceral fat, reduced cancer incidence and skin lesions, rejuvenated the immune system, and retarded bone mineral density loss. In old mice, FMD cycles promoted hippocampal neurogenesis, lowered IGF-1 levels and PKA activity, elevated NeuroD1, and improved cognitive performance. In a pilot clinical trial, three FMD cycles decreased risk factors/biomarkers for aging, diabetes, cardiovascular disease and cancer without major adverse effects, providing support for the use of FMDs to promote healthspan.
Summary Mice and humans with Growth Hormone Receptor/IGF-1 deficiencies display major reductions in age-related diseases. Because protein restriction reduces GHR-IGF-1 activity, we examined links between protein intake and mortality. Respondents (n=6,381) aged 50–65 reporting high protein intake had a 75% increase in overall mortality and a 4-fold increase in cancer and diabetes mortality during an 18 year follow up period. These associations were either abolished or attenuated if the source of proteins was plant-based. Conversely, in respondents over age 65, high protein intake was associated with reduced cancer and overall mortality. Mouse studies confirmed the effect of high protein intake and the GHR-IGF-1 axis on the incidence and progression of breast and melanoma tumors, and also the detrimental effects of a low protein diet in the very old. These results suggest that low protein intake during middle age followed by moderate protein consumption in old subjects may optimize healthspan and longevity.
Old-age survival has increased substantially since 1950. Death rates decelerate with age for insects, worms, and yeast, as well as humans. This evidence of extended postreproductive survival is puzzling. Three biodemographic insights--concerning the correlation of death rates across age, individual differences in survival chances, and induced alterations in age patterns of fertility and mortality--offer clues and suggest research on the failure of complicated systems, on new demographic equations for evolutionary theory, and on fertility-longevity interactions. Nongenetic changes account for increases in human life-spans to date. Explication of these causes and the genetic license for extended survival, as well as discovery of genes and other survival attributes affecting longevity, will lead to even longer lives.
Humans in modern societies typically consume food at least three times daily, while laboratory animals are fed ad libitum. Overconsumption of food with such eating patterns often leads to metabolic morbidities (insulin resistance, excessive accumulation of visceral fat, etc.), particularly when associated with a sedentary lifestyle. Because animals, including humans, evolved in environments where food was relatively scarce, they developed numerous adaptations that enabled them to function at a high level, both physically and cognitively, when in a food-deprived/fasted state. Intermittent fasting (IF) encompasses eating patterns in which individuals go extended time periods (e.g., 16–48h) with little or no energy intake, with intervening periods of normal food intake, on a recurring basis. We use the term periodic fasting (PF) to refer to IF with periods of fasting or fasting mimicking diets lasting from 2 to as many as 21 or more days. In laboratory rats and mice IF and PF have profound beneficial effects on many different indices of health and, importantly, can counteract disease processes and improve functional outcome in experimental models of a wide range of age-related disorders including diabetes, cardiovascular disease, cancers and neurological disorders such as Alzheimer’s disease Parkinson’s disease and stroke. Studies of IF (e.g., 60% energy restriction on 2 days per week or every other day), PF (e.g., a 5 day diet providing 750–1100 kcal) and time-restricted feeding (TRF; limiting the daily period of food intake to 8 h or less) in normal and overweight human subjects have demonstrated efficacy for weight loss and improvements in multiple health indicators including insulin resistance and reductions in risk factors for cardiovascular disease. The cellular and molecular mechanisms by which IF improves health and counteracts disease processes involve activation of adaptive cellular stress response signaling pathways that enhance mitochondrial health, DNA repair and autophagy. PF also promotes stem cell-based regeneration as well as long-lasting metabolic effects. Randomized controlled clinical trials of IF versus PF and isoenergetic continuous energy restriction in human subjects will be required to establish the efficacy of IF in improving general health, and preventing and managing major diseases of aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.