Mutations in the alpha-1a Tubulin (TUBA1A) gene have recently been found to cause cortical malformations resemblant of classical lissencephaly but with a specific combination of features. To date, TUBA1A mutations have been described in five patients and three foetuses. Our aims were to establish how common TUBA1A mutations are in patients with lissencephaly and to contribute to defining the phenotype associated with TUBA1A mutation. We performed mutation analysis in the TUBA1A gene in 46 patients with classical lissencephaly. In 44 of the patients, mutations in the LIS1 and/or DCX genes had previously been excluded; in 2 patients, mutation analysis was only performed in TUBA1A based on magnetic resonance imaging (MRI) findings. We identified three new mutations and one recurrent mutation in five patients with variable patterns of lissencephaly on brain MRI. Four of the five patients had congenital microcephaly, and all had dysgenesis of the corpus callosum and cerebellar hypoplasia, and variable cortical malformations, including subtle subcortical band heterotopia and absence or hypoplasia of the anterior limb of the internal capsule. We estimate the frequency of mutation in TUBA1A gene in patients with classical lissencephaly to be approximately 4%, and although not as common as mutations in the LIS1 or DCX genes, mutation analysis in TUBA1A should be included in the molecular genetic diagnosis of classical lissencephaly, particularly in patients with the combination of features highlighted in this paper.
Background. Facial vascularized composite allotransplantation (fVCA) presents an established approach to restore form and function of patients with catastrophic facial defects. Skin is one of the target tissues of the rejection process, and due to its easy accessibility has become the gold standard in the diagnosis of rejection. Mucosal rejection frequently occurs; however, the added value of mucosal rejection assessment for patient management is unknown. Methods. We conducted a systematic review of manuscripts listed in the MEDLINE/PubMed and GoogleScholar databases to identify articles that provide data on mucosal rejection following fVCA. For inclusion, papers had to be available as full-text and written in English. Non-VCA studies and animal studies were excluded. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results. We included 17 articles that described changes in allotransplanted mucosa of fVCAs. These articles yielded data on 168 BANFF graded biopsies of corresponding skin and mucosa biopsies. Rejection grades were consistently higher in mucosal biopsies. Concordance between allograft skin and mucosa biopsy grades increased with an increasing skin-BANFF grade. Mucosa rejection grades were on average lower in the early stages of the posttransplant period (<postoperative mo 12, time of motor, and sensory recovery) when compared to the later stages (>postoperative mo 12). Conclusions. The mucosa of facial allotransplants is one of the primary targets of rejection. The data indicates that higher-grade skin rejection does not occur in absence of mucosal rejection. Further investigations are needed to elucidate the exact role of mucosal biopsies for fVCA patient management.
IMPORTANCE Acute rejection is one of the most frequent complications in facial transplantation, with potentially severe consequences for the recipient if overlooked. Clinical signs, such as erythema or edema, are helpful to diagnose acute rejection in the early follow-up stage; however, it is not well known whether these clinical signs remain reliable markers of acute rejection beyond the second posttransplant year. OBJECTIVE To determine the diagnostic value of clinical signs of acute rejection after facial transplantation over time. DESIGN, SETTING, AND PARTICIPANTS A retrospective, single-center cohort study was conducted of patients who underwent facial transplantation at Brigham and Women's Hospital between April 2009 and October 2014, with up to an 8-year follow-up. Medical records were reviewed until September 30, 2017. The medical records from 104 encounters with 7 patients who underwent partial or full facial transplantation were analyzed for symptoms of rejection, immunosuppressive therapy, and histopathologic findings. MAIN OUTCOMES AND MEASURES The occurrence of 5 clinical signs of acute rejection were evaluated: erythema, edema, exanthema, suture line erythema, and mucosal lesions. Odds ratios (ORs) were calculated to determine the statistically significant association of these signs with the histopathologic diagnosis of rejection. In addition, tacrolimus blood levels, as a surrogate marker of immunosuppressive therapy, were evaluated. RESULTS Of the 7 patients included in the study, 5 were men. The mean follow-up was 66 months (range, 35-101). Of 104 clinical encounters, 46 encounters (44.2%) represented rejection episodes and 58 encounters (55.8%) represented no-rejection episodes. Beyond 2 years posttransplantation, only erythema (OR, 6.53; 95% CI, 1.84-20.11; P = .004) and exanthema (OR, ϱ; 95% CI, 2.2-ϱ; P = .004) were demonstrated to be reliable clinical signs of acute rejection in facial transplantation. There was also a statistically significant association of subtherapeutic tacrolimus levels with late rejection episodes (OR, 3.79; 95% CI, 1.25-12.88; P = .03). In addition, the occurrence of subclinical rejection was more frequent during later follow-up times (7 [24.1%] late rejections vs 1 [5.9%] early rejection). Five of 8 subclinical rejections (62.5%) were associated with subtherapeutic tacrolimus levels. CONCLUSIONS AND RELEVANCE Clinical signs of acute rejection in facial transplantation appear to be of limited diagnostic value, particularly after the second postoperative year. Until alternative biomarkers for rejection are identified, protocol skin biopsies will remain necessary for guiding assessments of allograft rejection. LEVEL OF EVIDENCE 3.
IntroductionInvestigators have struggled to produce a reliable chronic wound model. Recent progress with antioxidant enzyme inhibitors shows promise, but mortality rates are high. We modified the dosage and administration of an antioxidant enzyme inhibitor regimen to reduce mortality while inducing a chronic wound environment.Research design and methodsTo chemically induce a chronic wound environment, we applied modified doses of catalase (3-amino-1,2,4-triazole; intraperitoneal 0.5 g/kg) and glutathione peroxidase (mercaptosuccinic acid; topical 300 mg/kg) inhibitors to the dorsal wounds of 11-week-old db/db mice. A cohort of these mice was treated with a collagen-glycosaminoglycan scaffold. Both groups were compared with Diabetic control mice.ResultsThis study successfully induced a chronic wound in 11-week-old db/db mice, with no animal deaths. The antioxidant enzyme treated groups showed delayed wound contraction and significantly higher levels of inflammatory tissue, collagen deposition, cellular proliferation and leukocyte infiltration than the Diabetic control group. Angiogenesis was significantly higher in the antioxidant enzyme treated groups, but the vessels were immature and friable. Scaffold engraftment was poor but appeared to promote blood vessel maturation.ConclusionsOverall, the two in vivo groups treated with the antioxidant enzyme inhibitors appeared to be arrested in the inflammatory stage of wound healing, while the Diabetic control group progressed to the maturation phase and ultimately remodeling. This model may be instrumental for the development of new wound therapeutics.
In 2019, we performed what we believe to be the first full-face transplantation in a Black patient. The patient was a 67-year-old man who had burns over 50% of his total body-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.