Hepatocytes take up a variety of ligands via receptor-mediated endocytosis, yet little is known regarding either the volume of fluid or the amount of membrane internalized via endocytosis in liver cells. In these studies, we have utilized radiolabeled inulin to characterize fluid phase endocytosis by rat hepatocytes in primary culture and perfused rat liver. Uptake of inulin by cultured hepatocytes was nonlinear with time, occurring most rapidly during the first 2 min. Inulin uptake and efflux in cultured hepatocytes and inulin uptake by perfused rat liver were kinetically compatible with the entry of inulin into a rapidly (t1/2, 1-2 min) turning-over (presumably endosomal) compartment that exchanged contents with the extracellular space and comprised -3% of hepatocyte volume, as well as entry into and concentration of inulin within slowly (t1/2, >1 hr) turning-over storage compartments. Based on inulin uptake, it is estimated that cultured hepatocytes endocytosed the equivalent of 20% or more of their volume and 5 or more times their plasma membrane surface area each hour. Neither chloroquine (1 mM) nor taurocholate (200 ,uM) affected inulin handling by cultured cells, whereas colchicine (10 ,uM) inhibited transfer to storage compartments by >50%. In conjunction with our previous observations, the present findings suggest that inulin endocytosed across the basolateral membrane is largely (Q80%) regurgitated back into plasma, with smaller amounts transported to intracellular storage compartments ("18%) or to bile (-2%). Transport of inulin via these pathways is unaffected by taurocholate and does not require vesicle acidification, whereas intact microtubular function is required for transfer to storage compartments or biliary secretion.The ability to internalize extracellular material appears to be a property shared by most, if not all, cells. Hepatocytes are actively endocytic and internalize a variety of ligands by receptor-mediated endocytosis (1, 2), yet relatively little is known regarding the overall rate at which hepatocytes internalize extracellular fluid or fluid phase markers (3, 4).We have recently reported evidence that the intact perfused rat liver transports a variety of fluid phase markers from perfusate to bile via a transcellular vesicular mechanism (5). In the present study, we have extended these observations in perfused liver and also characterized fluid phase endocytosis by rat hepatocytes in primary culture. In addition to measuring the rate at which hepatocytes endocytose extracellular fluid, our principal objectives were as follows. First, several recent reports indicate that fluid phase markers are internalized initially into a compartment that exchanges with extracellular fluid (6-8); however, the kinetics of this process, which presumably reflect membrane recycling, remain incompletely characterized. We therefore sought evidence of such a process in mammalian liver and characterized it kinetically. Our second objective was to integrate observations in perfused liver and culture...
In these studies, we have used several approaches to systematically explore the contribution of transcellular vesicular transport (transcytosis) to the blood-to-bile movement of inert fluid-phase markers of widely varying molecular weight. First, under steady-state conditions, the perfused rat liver secreted even large markers in appreciable amounts. The bile-to-plasma (B/P) ratio of these different markers, including microperoxidase (B/P ratio = 0.06; mol wt = 1,879), inulin (B/P ratio = 0.09, mol wt = 5,000), horseradish peroxidase (B/P ratio = 0.04, mol wt = 40,000), and dextran (B/P ratio = 0.09, mol wt = 70,000), exhibited no clear ordering based on size alone, and when dextrans of two different sizes (40,000 and 70,000 mol wt) were studied simultaneously, the relative amounts of the two dextran species in bile were the same as in perfusate. Taurocholate administration produced a 71% increase in bile flow but little or no (0-20%) increase in the output of horseradish peroxidase, microperoxidase, inulin, and dextran. Second, under nonsteady-state conditions in which the appearance in or disappearance from bile of selected markers was studied after their abrupt addition to or removal from perfusate, erythritol reached a B/P ratio of 1 within 2 min. Microperoxidase and dextran appeared in bile only after a lag period of 12 min and then slowly approached maximal values, whereas sucrose exhibited kinetically intermediate behavior. A similar pattern was observed after removal of >95% of the marker from the perfusate. Erythritol rapidly reapproached a B/P ratio of 1, whereas the B/P ratio for sucrose, dextran, and microperoxidase fell much more slowly and exceeded 1 for a full 30 min after perfusate washout. Finally, electron microscopy and fluorescence microscopy of cultured hepatocytes demonstrated the presence of horseradish peroxidase and fluoresceindextran, respectively, in intracellular vesicles, and fractionation of perfused liver homogenates revealed that at least 35-50% of sucrose, inulin, and dextran was associated with subcellular organelles.Collectively, these observations are most compatible with a transcytosis pathway that contributes minimally to the secretion of erythritol, but accounts for a substantial fraction of sucrose secretion and virtually all (>95%) of the blood-to-bile
Pulmonary delivery of aqueous bolus aerosols of insulin in healthy subjects resulted in rapid absorption with an associated hypoglycemic effect quicker than is achieved after subcutaneous dosing of regular insulin. Inhaled insulin pharmacokinetics and pharmacodynamics were independent of formulation variables (pH, concentration) but affected by certain respiratory maneuvers.
Poly(lactic-co-glycolic) acid (PLGA) bioresorbable microspheres are used for controlled-release drug delivery and are particularly promising for ocular indications. The objective of the current study was to evaluate the pharmacokinetics and safety of a recombinant human monoclonal antibody (rhuMAb HER2) in rabbits after bolus intravitreal administration of a solution or a PLGA-microsphere formulation. On Day 0, forty-eight male New Zealand white rabbits (2.3-2.6 kg) were immobilized with intramuscular ketamine/xylazine, and the test materials were injected directly into the vitreous compartment. Group 1 animals received rhuMAb HER2 in 50:50 lactide: glycolide PLGA microspheres; Group 2 animals received rhuMAb HER2 in solution (n = 24/group). The dose for each eye was 25 microg (50 microl). After dosing, animals were sacrificed at 2 min, and on 1, 2, 4, 7, 14, 23, 29, 37, 44, 50, and 56 days (n = 2/timepoint/group). Safety assessment included direct ophthalmoscopy, clinical observations, body weight, and hematology and clinical chemistry panels. At necropsy, vitreous and plasma were collected for pharmacokinetics and analysis for antibodies to rhuMAb HER2, and the vitreal pellet (Group 1) was prepared for histologic evaluation. All animals completed the study per protocol-both treatments were well tolerated, and no suppurative or mixed inflammatory cell reaction was observed in the vitreal samples (Group 1) at any of the time points examined. Antibodies to rhuMAb HER2 were detected in plasma samples by Day 7 in both treatment groups, but infrequently in vitreous samples. There were no safety implications associated with this immune response. The in vitro characterization of the PLGA microspheres provided reasonable projections of the in vivo rhuMAb HER2 release kinetics (Group 1). The total amount of antibody that was released was similar in vitro (25.9%) and in vivo (32.4%). RhuMAb HER2 (Group 2) was cleared slowly from the vitreous compartment, with initial and terminal half-lives of 0.9 and 5.6 days, respectively. The volume of distribution approximated the vitreous volume in a rabbit eye.
Cholecystokinin (CCK) was conjugated to 125I-Bolton-Hunter reagent (125I-BH-CCK), and the binding of this ligand to CCK receptors in isolated mouse pancreatic acini was correlated with the regulation by CCK of both amylase release and the transport of 2-deoxyglucose and alpha-aminoisobutyric acid. Stimulation of amylase release by CCK was biphasic. At low CCK concentrations (less than 200 pM), amylase release was progressively stimulated, whereas at higher CCK concentrations (greater than 200 pM), amylase release was progressively reduced. In contrast, stimulation of 2-[3H]deoxyglucose transport and inhibition of alpha-[3H]aminoisobutyric acid transport were monophasic, being one-half maximal at 0.85 and 0.44 nM, respectively. Under incubation conditions identical to those employed for measuring biological functions, the binding of 125I-BH-CCK to receptors in acini was rapid and reversible. Competition-inhibition curves and Scatchard plots of equilibrium binding were compatible with two orders of binding sites. Employing a computer program for analysis of multiple binding sites, a high-affinity, low-capacity binding component having a Kd of 26 pM and a lower-affinity, higher-capacity binding component having a component Kd of 2.2 nM were resolved. Regulation of 2-[3H]deoxyglucose and alpha-[3H]aminoisobutyric acid uptake appeared, therefore, to be the result of fractional occupancy of the lower-affinity CCK receptors. Regulation of amylase released was more complex and appeared to be due to the concomitant occupancy of both the high- and low-affinity CCK receptors.
A simple parametrically controlled chemical transformation scheme is used to exemplify a model with transient response to sustained stimulation. More complicated schemes are also discussed. Analyses of three experimental examples are given: short-circuit current changes in toad bladder exposed to adenosine 3',5'-cyclic monophosphate (cAMP) stimulation; histamine secretion in acetylcholine-stimulated frog gastric mucosa; and cAMP dynamics, expressed in terms of adenylate cyclase dynamics, in histamine-stimulated frog gastric mucosa. The model responds primarily to the changes of the stimulator level, although it is not a model with derivative control.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers