This experiment aimed to determine the effects of camelina seed (CS) supplementation at different dietary fat levels on ruminal bacterial community composition and how it relates to changes in ruminal fermentation in a dual-flow continuous culture system. Diets were randomly assigned to 8 fermenters (1,200–1,250 mL) in a 2 × 2 factorial arrangement of treatments in a replicated 4 × 4 Latin square with four 10-day experimental periods that consisted of 7 days for diet adaptation and 3 days for sample collection. Treatments were: (1) no CS at 5% ether extract (EE, NCS5); (2) no CS at 8% EE (NCS8); (3) 7.7% CS at 5% EE (CS5); and (4) 17.7% CS at 8% EE (CS8). Megalac was used as a control to adjust EE levels. Diets contained 55% orchardgrass hay and 45% concentrate, and fermenters were equally fed a total of 72 g/day (DM basis) twice daily. The bacterial community was determined by sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Sequencing data were analyzed using mothur and statistical analyses were performed in R and SAS. The most abundant phyla across treatments were the Bacteroidetes and Firmicutes, accounting for 49 and 39% of the total sequences, respectively. The bacterial community composition in both liquid and solid fractions of the effluent digesta changed with CS supplementation but not by dietary EE. Including CS in the diets decreased the relative abundances of Ruminococcus spp., Fibrobacter spp., and Butyrivibrio spp. The most abundant genus across treatments, Prevotella, was reduced by high dietary EE levels, while Megasphaera and Succinivibrio were increased by CS supplementation in the liquid fraction. Correlatively, the concentration of acetate was decreased while propionate increased; C18:0 was decreased and polyunsaturated fatty acids, especially C18:2 n-6 and C18:3 n-3, were increased by CS supplementation. Based on the correlation analysis between genera and fermentation end products, this study revealed that CS supplementation could be energetically beneficial to dairy cows by increasing propionate-producing bacteria and suppressing ruminal bacteria associated with biohydrogenation. However, attention should be given to avoid the effects of CS supplementation on suppressing cellulolytic bacteria.
The objectives of this study were: 1) to compare the effects of live yeast (LY), yeast fermentation product (YFP), a mix of Lactobacillus acidophilus and Propionibacterium freudenreichii (MLP), and Lactobacillus plantarum included as additives in dairy cows’ diets on in vitro ruminal fermentation and gas production (GP); and 2) to evaluate the effects of L. plantarum as direct-fed microbials (DFM) in dairy cows’ diets on in vitro ruminal fermentation, GP, nutrient digestibility, and N metabolism. Three experiments were carried out: Exp. 1 had the objective to compare all additives regarding ruminal fermentation parameters: an Ankom GP system was used in a completely randomized design, consisting of four 48 h incubations, and eight replications per treatment. There were eight treatments: a basal diet without additive (CTRL) or with one of the following additives: LY, YFP, MLP, or L. plantarum at four levels (% of diet Dry Matter (DM)): 0.05% (L1), 0.10% (L2), 0.15% (L3), and 0.20% (L4). In Exp. 2, a batch culture was used to evaluate ruminal fermentation, and CO2 and CH4 production using the same treatments and a similar experimental design, except for having 16 replications per treatment. Based on Exp. 1 and 2 results, Exp. 3 aimed at evaluating the effects of the L. plantarum on ruminal true nutrient digestibility and N utilization in order to evaluate the use of L. plantarum as DFM. The treatments CTRL, MLP, L1, and L2 were used in a replicated 4 × 4 Latin square design using a dual-flow continuous culture system. Data were analyzed using linear and nonlinear regression; treatment means were compared through contrasts, and L treatments in Exp. 1 and 2 were tested for linear, quadratic, and cubic effects. In Exp. 1, all treatments containing additives tended to reduce OM digestibility as well as reduced total volatile fatty acids (VFA) concentration and total GP. The YFP had greater OM digestibility than LY, and MLP treatment had greater total VFA concentration compared to L. plantarum treatments. In Exp. 2, additives reduced CO2 production, and there were no major differences in CH4. In Exp. 3, all additives reduced NH3-N concentration. In conclusion, pH and lactate concentration were not affected in all three experiments regardless of additive tested, suggesting that these additives may not improve ruminal fermentation by pH modulation; and L. plantarum may improve ruminal N metabolism when used as DFM in high-producing dairy cows’ diets, mainly by reducing NH3-N concentration.
The objective of this study was to investigate the functional form of the relationship between diet composition (dietary crude protein [CP] and neutral detergent fiber [NDF]) and amount of substrate (fermenter dry matter intake [DMI]) with microbial fermentation end products in a dual-flow continuous culture system. A meta-analysis was performed using data from 75 studies. To derive the linear models, the MIXED procedure was used, and for nonlinear models, the NLMIXED procedure was used. Significance levels to fit the model assumed for fixed and random effects were P ≤ 0.05. Independent variables were dietary NDF, CP, and fermenter DMI, whereas dependent variables were total volatile fatty acids (VFA) concentration; molar proportions of acetate, propionate, and butyrate; true ruminal digestibilities of organic matter (OM), CP, and NDF; ammonia nitrogen (NH3–N) concentration and flows of NH3–N; non-ammonia nitrogen; bacterial-N; dietary-N; and efficiency of microbial protein synthesis (EMPS). Ruminal digestibilities of OM, NDF, and CP decreased as fermenter DMI increased (P < 0.04). Dietary NDF and CP digestibilities were quadratically associated (P < 0.01). Total VFA linearly increased as DMI increased (P < 0.01), exponentially decreased as dietary NDF increased (P < 0.01), and was quadratically associated with dietary CP (P < 0.01), in which total VFA concentration was maximized at 18% dietary CP. Molar proportion of acetate exponentially increased (P < 0.01) as dietary NDF increased. Molar proportion of propionate linearly increased and exponentially decreased as DMI and dietary NDF increased, respectively (P < 0.01). Bacterial-N quadratically increased and dietary-N exponentially increased as DMI increased (P < 0.01). Flows of bacterial-N and dietary-N linearly decreased as dietary NDF increased (P < 0.02), and dietary-N flow was maximized at 18% CP. The EMPS linearly increased as dietary CP increased (P < 0.02) and was not affected by DMI or dietary NDF (P > 0.05). In summary, increasing fermenter DMI increased total VFA concentration and molar proportion of propionate, whereas, dietary NDF increased the molar proportion of acetate. Dietary CP increased bacterial-N flow and was positively associated with NH3–N concentration. Overall, the analysis of this dataset demonstrates evidences that the dual-flow continuous culture system provides valuable estimates of ruminal digestibility, VFA concentration, and nitrogen metabolism.
Beef cows' milk yield is typically determined by measuring milk yield once daily and then doubling this value to estimate daily production. However, it is not known whether this is accurate. Thus, we aimed to determine the association between morning and afternoon milk yield in grazing Nellore cows. Eighty Nellore cows were used, with initial weight of 516.0 ± 1.0 kg. The experiment was a completely randomized factorial scheme, with 20 replications and four treatments (i.e., + or - pre-partum supplementation in combination with + or - post-partum supplementation): PRMM-1 kg of supplement/cow/day for 90 days pre-partum; MMPS-1 kg of supplement/cow/day for 90 days post-partum; PRPS-1 kg of supplement/cow/day for 90 days pre-partum and 90 days post-partum; and MM-only mineral mix ad libitum during pre- and post-partum. Milk was sampled on days 45, 135, and 225 post-partum (early, middle, and late lactation, respectively). No effects were observed of pre- and post-partum supplementation on milk yield (P > 0.05). The afternoon/morning proportion of 0.45 in the early third of lactation was higher than other stages, which had a proportion of 0.41 (P < 0.05). Post-partum supplementation increased milk protein in the morning and afternoon milking (P < 0.05). There was also no effect of pre- and post-partum supplementation on afternoon-morning proportion other milk components (P> 0.05). We conclude that estimating daily milk production of grazing beef cattle by multiplying a once daily milking amount times two is not accurate. Under the conditions of this study, proportion of total daily production represented by the ratio of afternoon/morning milking was 0.45 in early lactation (first third) and 0.41 in mid- and late lactation.
Camelina is a drought- and salt-tolerant oil seed, which in total ether extract (EE) contains up to 74% polyunsaturated fatty acids. The objective of this study was to assess the effects of replacing calcium salts of palm oil (Megalac, Church & Dwight Co. Inc., Princeton, NJ) with camelina seed (CS) on ruminal fermentation, digestion, and flows of fatty acids (FA) and AA in a dual-flow continuous culture system when supplemented at 5 or 8% dietary EE. Diets were randomly assigned to 8 fermentors in a 2 × 2 factorial arrangement of treatments in a replicated 4 × 4 Latin square design, with four 10-d experimental periods consisting of 7 d for diet adaptation and 3 d for sample collection. Treatments were (1) calcium salts of palm oil supplementation at 5% EE (MEG5); (2) calcium salts of palm oil supplementation at 8% EE (MEG8); (3) 7.7% CS supplementation at 5% EE (CS5); and (4) 17.7% CS supplementation at 8% EE (CS8). Diets contained 55% orchardgrass hay, and fermentors were fed 72 g of dry matter/d. On d 8, 9, and 10 of each period, digesta effluent samples were taken for ruminal NH, volatile fatty acids, nitrogen metabolism analysis, and long-chain FA and AA flows. Statistical analysis was performed using the MIXED procedure (SAS Institute Inc., Cary, NC). We detected an interaction between FA source and dietary EE level for acetate, where MEG8 had the greatest molar proportion of acetate. Molar proportions of propionate were greater and total volatile fatty acids were lower on CS diets. Supplementation of CS decreased overall ruminal nutrient true digestibility, but dietary EE level did not affect it. Diets containing CS had greater biohydrogenation of 18:2 and 18:3; however, biohydrogenation of 18:1 was greater in MEG diets. Additionally, CS diets had greater ruminal concentrations of trans-10/11 18:1 and cis-9,trans-11 conjugated linoleic acid. Dietary EE level at 8% negatively affected flows of NH-N (g/d), nonammonia N, and bacterial N as well as the overall AA outflow. However, treatments had minor effects on individual ruminal AA digestibility. The shift from acetate to propionate observed on diets containing CS may be advantageous from an energetic standpoint. Moreover, CS diets had greater ruminal outflow of trans-10/11 18:1 and cis-9,trans-11 conjugated linoleic acid than MEG diets, suggesting a better FA profile available for postruminal absorption. However, dietary EE at 8% was deleterious to overall N metabolism and AA outflow, indicating that CS can be fed at 5% EE without compromising N metabolism.
Bacterial cultures, enzymes and yeast derived feed additives are often included in commercial dairy rations due to their effects on ruminal fermentation. However, the effects of these additives when fed together are not well understood. The objective of this study was to evaluate the changes in ruminal fermentation when a dairy ration is supplemented with combinations of bacterial probiotics, enzymes and yeast. Our hypotheses were that ruminal fermentation would be altered, indicated through changes in volatile fatty acid profile and nutrient digestibility, with inclusion of: (1) an additive, (2) yeast and (3) increasing additive doses. Treatments were randomly assigned to 8 fermenters in a replicated 4 × 4 Latin square with four 10 d experimental periods, consisting of 7 d for diet adaptation and 3 d for sample collection. Basal diets contained 52:48 forage:concentrate and fermenters were fed 106 g of dry matter per day divided equally between 2 feeding times. Treatments were: control (CTRL, without additives); bacterial culture/enzyme blend (EB, 1.7 mg per day); bacterial culture/enzyme blend with a blend of live yeast and yeast culture (EBY, 49.76 mg per day); and double dose of the EBY treatment (2X, 99.53 mg per day). The bacterial culture/enzyme blend contained five strains of probiotics (Lactobacillus animalis, Propionibacterium freudenreichii, Bacillus lichenformis, Bacillus subtillis, and Enterococcus faecium) and three enzymes (amylase, hemicellulase, and xylanase). On d 8-10, samples were collected for pH, redox, volatile fatty acids, lactate, ammonia N and digestibility measurements. Statistical analysis was performed using the GLIMMIX procedure of SAS. Repeated measures were used for pH, redox, VFA, NH3-N and lactate kinetics data. Orthogonal contrasts were used to test the effect of: (1) additives, ADD (CTRL vs EB, EBY and 2X); (2) yeast, YEAST (EB vs EBY and 2X); and (3) dose, DOSE (EBY vs 2X). No effects (p > 0.05) were observed for pH, redox, NH3-N, acetate, isobutyrate, valerate, total VFA, acetate:propionate, nutrient digestibility or N utilization. Within the 24h pool, the molar proportion of butyrate increased (p = 0.03) with the inclusion of additives when compared to the control while the molar proportion of propionate tended to decrease (p = 0.07). In conclusion, inclusion of bacterial cultures, enzymes and yeast to the diet increased butyrate concentration; but did not result in major changes in ruminal fermentation.
The objectives of this study were to evaluate the effects of lipopolysaccharide (LPS) dosing on bacterial fermentation and bacterial community composition (BCC), to set up a subacute ruminal acidosis (SARA) nutritional model in vitro, and to determine the best sampling time for LPS dosing in a dual-flow continuous culture system. Diets were randomly assigned to 6 fermentors in a replicated 3 × 3 Latin square with three 11-d experimental periods that consisted of 7 d for diet adaptation and 4 d for sample collection. Treatments were control diet (CON), wheat and barley diet (WBD) to induce SARA, and control diet + LPS (LPSD). Fermenters were fed 72 g of dry matter/d. The forage: concentrate ratio of CON was 65:35. The WBD diet was achieved by replacing 40% of dry matter of the CON diet with 50% ground wheat and 50% ground barley. The LPS concentration in LPSD was 200,000 endotoxin units, which was similar to that observed in cows with SARA. The SARA inducing and LPS dosing started at d 8. The BCC was determined by sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform (Illumina Inc., San Diego, CA). The LPSD and CON maintained pH above 6 for the entire experimental period, and the WBD kept pH between 5.2 and 5.6 for 4 h/d, successfully inducing SARA. Digestibility of neutral detergent fiber and crude protein in LPSD were not different from WBD but tended to be lower than CON. Lipopolysaccharide dosing had no effect on pool of VFA concentrations and profiles but decreased bacterial N; the pattern changes of VFA and LPS in LPSD started to increase and be similar to WBD 6 h after LPS dosing. Pool of LPS concentration was around 11-fold higher in WBD and 4-fold higher in LPSD than CON. In the solid fraction, the BCC of LPSD was different from WBD and tended to be different from CON. In the liquid fraction, the BCC was different among treatments. The LPS dosing increased the relative abundance of Succinimonas, Anaeroplasma, Succinivibrio, Succiniclasticum, and Ruminobacter, which are main gram-negative bacteria related to starch digestion. Our results suggest that LPS dosing does not affect pH alone. However, LPS could drive the development of SARA by affecting bacteria and bacterial fermentation. For future studies, samples are suggested to be taken 6 h after LPS dosing in a dualflow continuous culture system.
The literature lacks studies investigating the performance of supplemented replacement heifers grazing on intensively managed warm-season pasture. Our objective was to evaluate the effects of supplement composition (energetic or protein) on the performance, muscle development, thermogenisis, nutrient intake, and digestibility of replacement Holstein heifers grazing Mombaça grass. Eighteen Holstein heifers with an average age and initial body weight (BW) of 12.57 ± 2.54 mo and 218.76 ±47.6 kg, respectively, were submitted to a randomized block design, with six replicates on a rotational grazing system of Panicum maximum cv. Mombaça pasture. Treatments were: control (CON; mineral salt ad libitum); energy supplement (ENE; corn meal as supplement, 8% CP and 3.78 Mcal/kg DE); and protein supplement (PRO; corn and soybean meal, 25% CP and 3.66 Mcal/kg DE). Supplements were individually fed at 0.5% BW. The experiment lasted 120 days, subdivided into three periods. Titanium dioxide and indigestible neutral detergent fiber (iNDF) were used to estimate the intakes and digestibility of the nutrients. BW, wither height, thoracic circumference, body length, and ultrasound of ribeye fat thickness measurements were taken once per period. Body condition score (BCS) was assessed twice during the experiment. The MIXED procedure of SAS, including period as a repeated measure, was used and significance was declared at P ≤ 0.05. Dry matter intake (DMI), CP intake (CPI) and DE intake were greater in heifers fed PRO compared to CON and ENE. Heifers supplemented with ENE had the lowest DMI. Treatment affected pasture intake/BW; it was similar between PRO and CON heifers, and lower for the ENE treatment. A treatment × period interaction was observed for NDF intake (%BW), in which heifers fed PRO and CON had the greatest NDF intake and ENE had the lowest. The digestibility of DM was the greatest in PRO-supplemented heifers and the lowest in CON heifers. Heifers fed ENE had decreased CP digestibility compared to PRO and CON heifers. Average daily gain (ADG) and thoracic circumference gain were greatest in the PRO treatment. BCS was greater in PRO compared to CON and ENE heifers. Supplementing Holstein heifers at 0.5% BW using PRO supplementation resulted in better animal performance, primarily greater ADG, than feeding ENE or not supplementing (CON). In conclusion, our results indicate that dairy heifers should be fed a protein supplement when grazing intensively managed Mombaça grass pasture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.