The exponential weighted moving average (EWMA) statistic is utilized the past information along with the present to enhance the efficiency of the estimators of the population parameters. In this study, the EWMA statistic is used to estimate the population mean with auxiliary information. The memory type ratio and product estimators are proposed under stratified sampling (StS). Mean square errors (MSE) expressions and relative efficiencies of the proposed estimators are derived. An extensive simulation study is conducted to evaluate the performance of the proposed estimators. An empirical study is presented based on real-life data that supports the findings of the simulation study.
In this paper, we proposed an improved family of estimators for finite population mean under stratified random sampling, which needed a helping variable on the sample mean and rank of the auxiliary variable. The expression of the bias and mean square error of the proposed and existing estimators are computed up to the first-order approximation. The estimators proposed in different situations were investigated and provided a minimum mean square error relative to all other estimators considered. Four actual data sets and simulation studies are carried out to observe the performance of the estimators. For simulation study, R software is used. The mean square errors of all four data sets are minimum and percent relative efficiencies are more than a hundred percent higher than the other existing estimators, which indicated the importance of the newly proposed family of estimators. From the simulation study, it is concluded that the suggested family of estimators achieved better results. We demonstrate theoretically and numerically that the proposed estimator produces efficient results compared to all other contend estimators in entire situations. Overall, we conclude that the performance of the family of suggested estimators is better than all existing estimators.
In this paper, we propose two new families of estimators for estimating the finite population distribution function in the presence of non-response under simple random sampling. The proposed estimators require information on the sample distribution functions of the study and auxiliary variables, and additional information on either sample mean or ranks of the auxiliary variable. We considered two situations of non-response (i) non-response on both study and auxiliary variables, (ii) non-response occurs only on the study variable. The performance of the proposed estimators are compared with the existing estimators available in the literature, both theoretically and numerically. It is also observed that proposed estimators are more precise than the adapted distribution function estimators in terms of the percentage relative efficiency.
The new generalized exponential ratio cum dual to ratio type estimators are suggested using the transformation of Srivenkataramana (Biometrika 67:199-204, 1980) to the auxiliary variables for estimating the finite population mean. The expressions for mean square errors and biases of the proposed estimators have been derived up to first order of approximation. The conditions have been obtained for which the proposed estimators are more efficient than existing estimators. Empirical study is presented to evaluate the performance of proposed estimators.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.