Chicken muscle quality is one of the most important factors determining the economic value of poultry, and muscle development and growth are affected by genetics, environment, and nutrition. However, little is known about the molecular regulatory mechanisms of long non-coding RNAs (lncRNAs) in chicken skeletal muscle development. Our study aimed to better understand muscle development in chickens and thereby improve meat quality. In this study, Ribo-Zero RNA-Seq was used to investigate differences in the expression profiles of muscle development related genes and associated pathways between Gushi (GS) and Arbor Acres (AA) chickens. We identified two muscle tissue specific expression lncRNAs. In addition, the target genes of these lncRNAs were significantly enriched in certain biological processes and molecular functions, as demonstrated by Gene Ontology (GO) analysis, and these target genes participate in five signaling pathway, as revealed by an analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Taken together, these data suggest that different lncRNAs might be involved in regulating chicken muscle development and growth and provide new insight into the molecular mechanisms of lncRNAs.
The biological functions of long noncoding RNAs (lncRNAs), which play an important role in regulating development and gene expression, may be affected by variations in lncRNA gene loci or associated genomic sequences. However, the functions of many lncRNAs remain unknown. To analyse correlations between mutations in pouMU1 with chicken growth and carcass traits, 860 chickens from a Gushi×Anka F2 resource population and 96 Lushi, Xichuan, Changshun and recessive white chickens were used to evaluate the genetic effect of the pouMU1 gene. We performed quantitative real-time polymerase chain reaction (qRT-PCR) to analyse the relative expression levels of pouMU1 in nine different tissues and stages of development. pouMU1 expression was highest in pectoralis and leg muscles, whereas no expression was observed in the heart, liver and abdominal fat. Using direct sequencing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods, two novel sequence mutations (g.1198A>G and g.1238-1239del/insGA) were detected in the pouMU1 gene. SPSS software was used for statistical analysis in association studies. Based on the association data, the presence of both variants was significantly associated with leg muscle fibre width and leg muscle fibre roundness (P < 0.05) and highly associated with leg muscle fibre girth and body weight at 0 week of age (P < 0.01). These data suggest that pouMU1 might participate in regulating chicken muscle development and growth, and the findings offer new insight into the functions of sequence mutations in lncRNAs.
The formation mechanism underlying the blue eggshell characteristic has been discovered in birds, and SLCO1B3 is the key gene that regulates the blue eggshell color. Insertion of an endogenous retrovirus, EAV-HP, in the SLCO1B3 5′ flanking region promotes SLCO1B3 expression in the chicken shell gland, and this expression causes bile salts to enter the shell gland, where biliverdin is secreted into the eggshell, forming a blue shell. However, at different laying stages of the same group of chickens, the color of the eggshell can vary widely, and the molecular mechanism underlying the eggshell color change remains unknown. Therefore, to reveal the molecular mechanism of the blue eggshell color variations, we analyzed the change in the eggshell color during the laying period. The results indicated that the eggshell color in Lushi chickens can be divided into three stages: 20–25 weeks for dark blue, 26–45 weeks for medium blue, and 46–60 weeks for light blue. We further investigated the expression and methylation levels of the SLCO1B3 gene at eight different weeks, finding that the relative expression of SLCO1B3 was significantly higher at 25 and 30 weeks than at other laying weeks. Furthermore, the overall methylation rate of the SLCO1B3 gene in Lushi chickens increased gradually with increasing weeks of egg production, as shown by bisulfite sequencing PCR. Pearson correlation analysis showed that methylation of the promoter region of SLCO1B3 was significantly negatively correlated with both SLCO1B3 expression in the shell gland tissue and eggshell color. In addition, we predicted that CpG5 and CpG8 may be key sites for regulating SLCO1B3 gene transcription. Our findings show that as the level of methylation increases, methylation of the CpG5 and CpG8 sites hinders the binding of transcription factors to the promoter, reducing SLCO1B3 expression during the late period and resulting in a lighter eggshell color.
Stress‐induced immunosuppression is one of the serious threats to the poultry industry, especially obvious for young chicken. However, the molecular mechanism of stress‐induced immunosuppression has not been clear in chicken. Here, we established an immunosuppression model of 7‐day‐old chickens with injecting dexamethasone (Dex) to analyze the molecular regulation in the chicken thymus. The microRNAs (miRNAs) transcripts profiles of thymuses from the model and control group were identified by the Solexa sequencing technology. The results showed 121 significantly differently expressed (SDE) miRNAs, including 119 known and two novel miRNAs (novel‐58 and novel‐350). A total of 391 target genes of the SDE miRNAs were predicted and annotated. We verified the potential negative correlation between gga‐miR‐103‐3p and TGM2 by quantitative real‐time polymerase chain reaction (qRT‐PCR), as well as between novel‐350 and PCBD2, and the results were positive. Gene ontology (GO) enrichment analysis showed that there was 298 significant enrichment GO terms, in which 31 were related to immune or stress, such as lymphocyte apoptotic process and response to stress. KEGG pathway analysis suggested that the SDE miRNAs were involved in autophagy regulation, cytokine‐cytokine receptor interaction, Toll‐like receptor signaling pathway, Jak‐STAT signaling pathway, and so on (although not significantly enriched). In these immune signaling pathways, the SDE miRNAs (such as gga‐miR‐2954, gga‐miR‐146b‐3p, gga‐miR‐106‐3p, and gga‐miR‐214) and the predicted target genes (such as IL11Ra, CSF3R, IFNGR1, CNTF, and MAP2K2) might affect the thymus immune function of chicken. The above results would provide a basis for uncovering the molecular regulation mechanism of immunosuppression in poultry.
Golgin subfamily B member 1 (GOLGB1) gene encodes the coat protein 1 vesicle inhibiting factor, giantin. Previous study showed that mutations of the GOLGB1 gene are associated with dozens of human developmental disorders and diseases. However, the biological function of GOLGB1 gene in chicken is still unclear. In this study, we detected a novel 65-bp insertion/deletion (indel) polymorphism in the chicken GOLGB1 intron 5. Association of this indel with chicken growth and carcass traits was analyzed in a yellow chicken population. Results showed that this 65-bp indel was significantly associated with chicken body weight (p < 0.05), highly significantly associated with neck weight, abdominal fat weight, abdominal fat percentage and the yellow index b of breast (p < 0.01). Analysis of genetic parameters indicated that “I” was the predominant allele. Except for the yellow index b of breast, II genotype individuals had the best growth characteristics, by comparison with the ID genotype and DD genotype individuals. Moreover, the mRNA expression of GOLGB1 was detected in the liver tissue of chicken with different GOLGB1 genotypes, where the DD genotype displayed high expression levels. These findings hinted that the 65-bp indel in GOLGB1 could be assigned to a molecular marker in chicken breeding and enhance production in the chicken industry.
The Ras and Rab interactor 2 (RIN2) gene, which encodes RAS and Rab interacting protein 2, can interact with GTP-bound Rab5 and participate in early endocytosis. This study found a 61-bp insertion/deletion (indel) in the RIN2 intron region, and 3 genotypes II, ID, and DD were observed. Genotype analysis of mutation sites was performed on 665 individuals from F2 population and 8 chicken breeds. It was found that the indel existed in each breed and that yellow feathered chickens were mainly of the DD genotype. Correlation analysis of growth and carcass traits in the F2 population of Xinghua and White Recessive Rock chickens showed that the 61-bp indel was significantly correlated with abdominal fat weight, abdominal fat rate, fat width, and hatching weight (P < 0.05). RIN2 mRNA was expressed in all the tested tissues, and its expression in abdominal fat was higher than that in other tissues. In addition, the expression of the RIN2 mRNA in the abdominal fat of the DD genotype was significantly higher than that of the II genotype (P < 0.05). The transcriptional activity results showed that the luciferase activity of the pGL3-DD vector was significantly higher than that of the pGL3-II vector (P < 0.01). Moreover, the results indicate that the polymorphisms in transcription factor binding sites (TFBSs) of 61-bp indel may affect the transcriptional activity of RIN2, and thus alter fat traits in chicken. The results of this study showed that the 61-bp indel was closely related to abdominal fat-related and hatching weight traits of chickens, which may have reference value for molecular marker-assisted selection of chickens.
Background: G-protein subunit beta 1 like (GNB1L) encodes a G-protein beta-subunit-like polypeptide. Chicken GNB1L is upregulated in the breast muscle of high feed efficiency chickens, and its expression is 1.52-fold that in low feed efficiency chickens. However, no report has described the effects of GNB1L indels on the chicken carcass and growth traits. Results: This study identified a 31-bp indel in the 5′ untranslated region (UTR) of GNB1L and elucidated the effect of this gene mutation on the carcass and growth traits in chickens. The 31-bp indel showed a highly significant association with the body weight at 8 different stages and was significantly correlated with daily gains at 0 to 4 weeks and 4 to 8 weeks. Similarly, the mutation was significantly associated with small intestine length, breast width, breast depth and breast muscle weight. Moreover, DD and ID were superior genotypes for chicken growth and carcass traits. Conclusions: These results show that the 31-bp indel of GNB1L significantly affects chicken body weight and carcass traits and can serve as a candidate molecular marker for chicken genetics and breeding programs.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers