The HEMS beamline at PETRA III has a main energy of 120 keV, is tunable in the range 30-200 keV, and optimized for sub-micrometer focusing with Compound Refractive Lenses. Design, construction, and main funding was the responsibility of the Helmholtz-Zentrum Geesthacht, HZG. Approximately 70 % of the beamtime is dedicated to Materials Research, the rest reserved for “general physics” experiments covered by DESY, Hamburg. The beamline P07 in sector 5 consists of an undulator source optimized for high energies, a white beam optics hutch, an in-house test facility and three independent experimental hutches, plus additional set-up and storage space for long-term experiments. HEMS has partly been operational since summer 2010. First experiments are introduced coming from (a) fundamental research for the investigation of the relation between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, recrystallisation processes, and the development of new & smart materials or processes; (b) applied research for manufacturing process optimization benefitting from the high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of microstructural transformations, e.g. in-situ friction stir welding; (c) experiments targeting the industrial user community.
High‐energy X‐rays offer the large penetration depths that are often required for determination of bulk properties in engineering materials research. Photon energies of 150 keV and more are available at synchrotron sources, depending on storage ring and insertion device. In addition, synchrotron sources can offer very high intensities on the sample even at these energies. They can be used not only to obtain high spatial resolution using very small beams, but also high time resolution in combination with a fast detector. This opens up possibilities for a wide range of in situ experiments. Typical examples that are already widely used are heating or tensile testing in the beam. However, there are also more challenging in situ experiments in the field of engineering materials research like e.g. dilatometry, differential scanning calorimetry, or cutting. Nevertheless, there are a number of applications where neutron techniques are still favorable and both probes, photons and neutrons, should be regarded as complementary. A number of in situ experiments were realized at the GKSS synchrotron and neutron beamlines and selected examples are presented in the following.
In this work, a defocused laser was used to modify the residual stress state in AA2198-T8 C(T)100 specimens with the goal of retarding fatigue crack growth. The manuscript provides a description of the process, the resulting changes of the material properties and the modified fatigue crack growth behaviour. The performed experiments, including thermocouple measurements, microscopical examinations, micro-hardness measurements, residual stress measurements and fatigue crack growth measurements under constant amplitude loading show, that via laser heating a substantial retardation of fatigue crack growth can be achieved.
The strain and stress state in the chip formation zone determines the chip formation. However, it is difficult to obtain experimental data about the strain/stress fields during machining. For this reason, present chip formation models highly simplify the chip formation process. In order to extend the knowledge regarding the chip formation mechanisms, an experimental method for the in situ measurement of the elastic deformations within the chip formation zone during the cutting process has been developed. Using these deformations, the stress state can subsequently be calculated. The method is based on X-ray diffraction using high-energy synchrotron X-radiation during machining the workpiece in an orthogonal cutting process under quasistatic experimental conditions. The diffraction patterns are captured with a 2D detector. A comparison of the experimentally determined stresses at different measuring positions within the chip formation zone with results from a FEM cutting simulation shows a good qualitative and partially also quantitative consistency. Possibilities for the further performance increase of the method are identified so that the method can be used for the verification and extension of existing chip formation models in future
A conical slit cell for depth-resolved diffraction of high-energy X-rays was used for residual stress analysis at the high-energy materials science synchrotron beamline HEMS at PETRA III. With a conical slit width of 20 µm and beam cross-sections of 50 µm, a spatial resolution in beam direction of 0.8 mm was achieved. The setup was used for residual stress analysis in a drawn steel wire with 8.3 mm diameter. The residual stress results were in very good agreement with results of a FE simulation.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.