Abstract-An attacker that can identify messages as coming from the same source, can use this information to build up a picture of targets' behaviour, and so, threaten their privacy. In response to this danger, unlinkable protocols aim to make it impossible for a third party to identify two runs of a protocol as coming from the same device. We present a framework for analysing unlinkability and anonymity in the applied pi calculus. We show that unlinkability and anonymity are complementary properties; one does not imply the other. Using our framework we show that the French RFID e-passport preserves anonymity but it is linkable therefore anyone carrying a French e-passport can be physically traced.
International audienceThis paper defines action-labelled quantitative transition systems as a general framework for combining qualitative and quantitative analysis. We define state-metrics as a natural extension of bisimulation from non-quantitative systems to quantitative ones. We then prove that any single state-metric corresponds to a bisimulation and that the greatest state-metric corresponds to bisimilarity. Furthermore, we provide two extended examples which show that our results apply to both probabilistic and weighted automata as special cases of action-labelled quantitative transition systems
Abstract. Information theory provides a range of useful methods to analyse probability distributions and these techniques have been successfully applied to measure information flow and the loss of anonymity in secure systems. However, previous work has tended to assume that the exact probabilities of every action are known, or that the system is non-deterministic. In this paper, we show that measures of information leakage based on mutual information and capacity can be calculated, automatically, from trial runs of a system alone. We find a confidence interval for this estimate based on the number of possible inputs, observations and samples. We have developed a tool to automatically perform this analysis and we demonstrate our method by analysing a Mixminon anonymous remailer node.
Implantable Medical Devices (IMDs) typically use proprietary protocols with no or limited security to wirelessly communicate with a device programmer. These protocols enable doctors to carry out critical functions, such as changing the IMD's therapy or collecting telemetry data, without having to perform surgery on the patient. In this paper, we fully reverse-engineer the proprietary communication protocol between a device programmer and the latest generation of a widely used Implantable Cardioverter Defibrillator (ICD) which communicate over a long-range RF channel (from two to five meters). For this we follow a black-box reverse-engineering approach and use inexpensive Commercial Off-The-Shelf (COTS) equipment. We demonstrate that reverse-engineering is feasible by a weak adversary who has limited resources and capabilities without physical access to the devices. Our analysis of the proprietary protocol results in the identification of several protocol and implementation weaknesses. Unlike previous studies, which found no security measures, this article discovers the first known attempt to obfuscate the data that is transmitted over the air. Furthermore, we conduct privacy and Denial-of-Service (DoS) attacks and give evidence of other attacks that can compromise the patient's safety. All these attacks can be performed without needing to be in close proximity to the patient. We validate that our findings apply to (at least) 10 types of ICDs that are currently on the market. Finally, we propose several practical short-and long-term countermeasures to mitigate or prevent existing vulnerabilities.
Abstract. Since 2004, many nations have started issuing "e-passports" containing an RFID tag that, when powered, broadcasts information. It is claimed that these passports are more secure and that our data will be protected from any possible unauthorised attempts to read it. In this paper we show that there is a flaw in one of the passport's protocols that makes it possible to trace the movements of a particular passport, without having to break the passport's cryptographic key. All an attacker has to do is to record one session between the passport and a legitimate reader, then by replaying a particular message, the attacker can distinguish that passport from any other. We have implemented our attack and tested it successfully against passports issued by a range of nations.
Abstract. Programs that process secret data may inadvertently reveal information about those secrets in their publicly-observable output. This paper presents LeakWatch, a quantitative information leakage analysis tool for the Java programming language; it is based on a flexible "point-to-point" information leakage model, where secret and publiclyobservable data may occur at any time during a program's execution. LeakWatch repeatedly executes a Java program containing both secret and publicly-observable data and uses robust statistical techniques to provide estimates, with confidence intervals, for min-entropy leakage (using a new theoretical result presented in this paper) and mutual information. We demonstrate how LeakWatch can be used to estimate the size of information leaks in a range of real-world Java programs.
Abstract-We present a statistical test for detecting information leaks in systems with continuous outputs. We use continuous mutual information to detect the information leakage from trial runs of a probabilistic system. It has been shown that there is no universal rate of convergence for sampled mutual information, however when the leakage is zero, and under some reasonable conditions, we establish a rate for the sampled estimate, and show that it can converge to zero very quickly. We use this result to develop a statistical test for information leakage, and we use our new test to analyse a number of possible fixes for a time-based information leak in e-passports. We compare our new test with existing statistical methods, and we find that our test outperforms these other tests in almost all cases, and in one case in particular, ours is the only statistical test that can detect an information leak.
We describe a method (implemented in a program, GAZE) for assembling arbitrary evidence for individual gene components (features) into predictions of complete gene structures. Our system is generic in that both the features themselves, and the model of gene structure against which potential assemblies are validated and scored, are external to the system and supplied by the user. GAZE uses a dynamic programming algorithm to obtain the highest scoring gene structure according to the model and posterior probabilities that each input feature is part of a gene. A novel pruning strategy ensures that the algorithm has a run-time effectively linear in sequence length. To demonstrate the flexibility of our system in the incorporation of additional evidence into the gene prediction process, we show how it can be used to both represent nonstandard gene structures (in the form of trans-spliced genes in Caenorhabditis elegans), and make use of similarity information (in the form of Expressed Sequence Tag alignments), while requiring no change to the underlying software. GAZE is available at http://www. sanger.ac.uk/Software/analysis/GAZE.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers