The cell-to-cell transmission of viral resistance is a potential mechanism for amplifying the interferon-induced antiviral response. In this study, we report that interferon-α (IFN-α) induced the transfer of resistance to hepatitis B virus (HBV) from nonpermissive liver nonparenchymal cells (LNPCs) to permissive hepatocytes via exosomes. Exosomes from IFN-α-treated LNPCs were rich in molecules with antiviral activity. Moreover, exosomes from LNPCs were internalized by hepatocytes, which mediated the intercellular transfer of antiviral molecules. Finally, we found that exosomes also contributed to the antiviral response of IFN-α to mouse hepatitis virus A59 and adenovirus in mice. Thus, we propose an antiviral mechanism of IFN-α activity that involves the induction and intercellular transfer of antiviral molecules via exosomes.
Endogenous H(2)S is synthesized mainly by cystathionine gamma-lyase in the heart. The present study investigated the role of H(2)S in cardioprotection induced by ischemic preconditioning. We have examined the effect of endogenous H(2)S and exogenous application of NaHS (H(2)S donor) on cardiac rhythm in the isolated rat heart subjected to low-flow ischemia insults as well as cell viability and function in isolated myocytes exposed to simulated ischemia solution. Preconditioning with NaHS (SP) or ischemia (IP) for three cycles (3 min each cycle separated by 5 min of recovery) significantly decreased the duration and severity of ischemia/reperfusion-induced arrhythmias in the isolated heart while increasing cell viability and the amplitude of electrically induced calcium transients after ischemia/reperfusion in cardiac myocytes. Both IP and SP also significantly attenuated the decreased H(2)S production during ischemia. Moreover, decreasing endogenous H(2)S production significantly attenuated the protective effect of IP in both the isolated heart and isolated cardiac myocytes. Blockade of protein kinase C with chelerythrine or bisindolylmaleimide I as well as ATP-sensitive K(+) (K(ATP)) channel with glibenclamide (a nonselective K(ATP) blocker) and HMR-1098 (1-[[5-[2-(5-Chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl]-3-methylthiourea) (a sarcolemmal K(ATP) channel blocker) reversed the cardioprotection induced by SP or IP. However, blockade of mitochondrial K(ATP) channels with 5-hydroxydecanoic acid had no effect on the cardioprotection of SP, suggesting that, unlike the mechanism involved in IP, mitochondrial K(ATP) channels most probably do not play a major role in the cardioprotection of SP. Our findings suggest that endogenous H(2)S contributes to cardioprotection induced by IP, which effect may involve protein kinase C and sarcolemmal K(ATP) channels.
We previously reported that hydrogen sulfide (H(2)S) preconditioning (SP) produces cardioprotective effects against ischemia in rat cardiac myocytes. The present study aims to elucidate the signaling mechanisms involved in SP-induced cardioprotection by investigating the role of extracellular signal regulated kinase (ERK1/2) and phosphatidylinositol 3-kinase (PI3K)/Akt. We found that preconditioning with NaHS (a H(2)S donor) for three cycles significantly decreased myocardial infarct size and improved heart contractile function in the isolated rat hearts. NaHS (1-100 microM) concentration-dependently increased cell viability and percentage of rod-shaped cardiac myocytes. Blockade of ERK1/2 with PD 98059 or PI3K/Akt with LY-294002 or Akt inhibitor III during either preconditioning or ischemia periods significantly attenuated the cardioprotection of SP, suggesting that both ERK1/2 and PI3K/Akt triggered and mediated the cardioprotection of SP. Moreover, SP induced ERK1/2 and Akt phosphorylation in isolated hearts. The phosphorylation of ERK1/2 induced by SP was attenuated by either glibenclamide, an ATP-sensitive K(+) channel (K(ATP)) blocker, or chelerythrine, a specific protein kinase C (PKC) blocker. In addition, ischemic-preconditioning-induced ERK1/2 activation was reversed by inhibiting endogenous H(2)S production, suggesting that ERK1/2 activation induced by ischemic preconditioning was, at least partly, mediated by endogenous H(2)S. In conclusion, K(ATP)/PKC/ERK1/2 and PI3K/Akt pathways contributed to SP-induced cardioprotection.
Circulating trimethylamine N‐oxide (TMAO), a canonical metabolite from gut flora, has been related to the risk of cardiovascular disorders. However, the association between circulating TMAO and the risk of cardiovascular events has not been quantitatively evaluated. We performed a systematic review and meta‐analysis of all available cohort studies regarding the association between baseline circulating TMAO and subsequent cardiovascular events. Embase and PubMed databases were searched for relevant cohort studies. The overall hazard ratios for the developing of cardiovascular events (CVEs) and mortality were extracted. Heterogeneity among the included studies was evaluated with Cochran's Q Test and I
2 statistics. A random‐effect model or a fixed‐effect model was applied depending on the heterogeneity. Subgroup analysis and meta‐regression were used to evaluate the source of heterogeneity. Among the 11 eligible studies, three reported both CVE and mortality outcome, one reported only CVEs and the other seven provided mortality data only. Higher circulating TMAO was associated with a 23% higher risk of CVEs (HR = 1.23, 95% CI: 1.07–1.42, I
2 = 31.4%) and a 55% higher risk of all‐cause mortality (HR = 1.55, 95% CI: 1.19–2.02, I
2 = 80.8%). Notably, the latter association may be blunted by potential publication bias, although sensitivity analysis by omitting one study at a time did not significantly change the results. Further subgroup analysis and meta‐regression did not support that the location of the study, follow‐up duration, publication year, population characteristics or the samples of TMAO affect the results significantly. Higher circulating TMAO may independently predict the risk of subsequent cardiovascular events and mortality.
In order to understand the possible qq quark-model assignments of the BJ (5840) and BJ (5960) recently reported by the LHCb Collaboration, we evaluate mass spectra, strong decays, and radiative decays of bottom and bottom-strange mesons in a nonrelativistic quark model. Comparing these predictions with the relevant experimental results, we suggest that the BJ (5840) and BJ (5960) can be identified as B(2 1 S0) and B(1 3 D3), respectively, and the B(5970) reported by the CDF Collaboration can be interpreted as B(2 3 S1) or B(1 3 D3). Further precise measurements of the width, spin and decay modes of the B(5970) are needed to distinguish these two assignments. These predictions of bottom and bottom-strange mesons can provide useful information to further experimental investigations.
Viperin is a type-I and -II interferon-inducible intracytoplasmic protein that mediates antiviral activity against several viruses. A previous study has reported that viperin could limit hepatitis C virus (HCV) replication in vitro. However, the underlying mechanism remains elusive. In the present study, we found that overexpression of viperin could inhibit HCV replication in a dose-dependent manner in both the replicon and HCVcc systems. Furthermore, through co-immunoprecipitation and laser confocal microscopic analysis, viperin was found to interact with the host protein hVAP-33. Mutagenesis analysis demonstrated that the anti-HCV activity of viperin was located to its C terminus, which was required for the interaction with the C-terminal domain of hVAP-33. Competitive co-immunoprecipitation analysis showed that viperin could interact competitively with hVAP-33, and could therefore interfere with its interactions with HCV NS5A. In summary, these findings suggest a novel mechanism by which viperin inhibits HCV replication, possibly through binding to host protein hVAP-33 and interfering with its interaction with NS5A.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.