The aim of the present study is to construct a competitive endogenous RNA (ceRNA) regulatory network by using differentially expressed long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in patients with hepatocellular carcinoma (HCC), and to construct a prognostic model for predicting overall survival (OS) of HCC patients. Differentially expressed lncRNAs, miRNAs, and mRNAs were explored between HCC tissues and normal liver tissues. A prognostic model was built for predicting OS of HCC patients and receiver operating characteristic curves were used to evaluate the performance of the prognostic model. There were 455 differentially expressed lncRNAs, 181 differentially expressed miRNAs, and 5035 differentially expressed mRNAs. A ceRNA regulatory network was constructed based on 43 lncRNAs, 37 miRNAs, and 105 mRNAs. Eight mRNA biomarkers (H2AFX, SQSTM1, ITM2A, PFKP, TPD52L1, ACSL4, STRN3, and CPEB3) were identified as independent risk factors by multivariate Cox regression and were used to develop a prognostic model for OS. The C‐indexes in the model group were 0.776 (95% confidence interval [CI], 0.730‐0.822), 0.745 (95% CI, 0.699‐0.791), and 0.789 (95% CI, 0.743‐0.835) for 1‐, 3‐, and 5‐year OS, respectively. The current study revealed potential molecular biological regulation pathways and prognostic biomarkers by the ceRNA regulatory network. A prognostic model based on prognostic mRNAs in the ceRNA network might be helpful to predict the individual mortality risk for HCC patients. The individual mortality risk calculator can be used by visiting the following URL: https://zhangzhiqiao.shinyapps.io/Smart_cancer_predictive_system_HCC/.
An increasing body of evidence supports the association of immune genes with tumorigenesis and prognosis of breast cancer (BC). This research aims at exploring potential regulatory mechanisms and identifying immunogenic prognostic markers for BC, which were used to construct a prognostic signature for disease-free survival (DFS) of BC based on artificial intelligence algorithms. Differentially expressed immune genes were identified between normal tissues and tumor tissues. Univariate Cox regression identified potential prognostic immune genes. Thirty-four transcription factors and 34 immune genes were used to develop an immune regulatory network. The artificial intelligence survival prediction system was developed based on three artificial intelligence algorithms. Multivariate Cox analyses determined 17 immune genes (ADAMTS8, IFNG,
Background Accumulated evidences have demonstrated that long non-coding RNAs (lncRNAs) are correlated with prognosis of patients with hepatocellular carcinoma. The current study aimed to develop and validate a prognostic lncRNA signature to improve the prediction of overall survival in hepatocellular carcinoma patients. Methods The study cohort involved 348 hepatocellular carcinoma patients with lncRNA expression information and overall survival information. Through gene mining approach, the current study established a prognostic lncRNA signature (named LncRNA risk prediction score) for predicting the overall survival of hepatocellular carcinoma patients. Results The current study built a predictive nomogram based on ten prognostic lncRNA predictors through Cox regression analysis. In model group, the Harrell’s concordance indexes of LncRNA risk prediction score were 0.811 (95% CI 0.769–0.853) for 1-year overall survival, 0.814 (95% CI 0.772–0.856) for 3-year overall survival and 0.796 (95% CI 0.754–0.838) for 5-year overall survival respectively. In validation cohort, the Harrell’s concordance indexes of LncRNA risk prediction score were 0.779 (95% CI 0.737–0.821), 0.828 (95% CI 0.786–0.870) and 0.796 (95%CI 0.754–0.838) for 1-year survival, 3-year survival and 5-year survival respectively. LncRNA risk prediction score could stratify hepatocellular carcinoma patients into low risk group and high risk group. Further survival curve analysis demonstrated that the overall survival rate of high risk patients was significantly poorer than that of low risk patients ( P < 0.001). Conclusions In conclusion, the current study developed and validated a prognostic signature to predict the individual mortality risk for hepatocellular carcinoma patients. LncRNA risk prediction score is helpful to identify the patients with high mortality risk and optimize the individualized treatment decision. The web calculator can be used by click the following URL: https://zhangzhiqiao2.shinyapps.io/Smart_cancer_predictive_system_HCC_3/ . Electronic supplementary material The online version of this article (10.1186/s12935-019-0890-2) contains supplementary material, which is available to authorized users.
BackgroundThe current study aimed to construct competing endogenous RNA (ceRNA) regulation network and develop two precision medicine predictive tools for colorectal cancer (CRC).MethodsDifferentially expressed (DE) analyses were performed between CRC tissues and normal tissues. A ceRNA regulation network was constructed based on DElncRNAs, DEmiRNAs, and DEmRNAs.ResultsFifteen mRNAs (ENDOU, MFN2, FASLG, SHOC2, VEGFA, ZFPM2, HOXC6, KLK10, DDIT4, LPGAT1, BEX4, DENND5B, PHF20L1, HSP90B1, and PSPC1) were identified as prognostic biomarkers for CRC by multivariate Cox regression. Then a Fifteen-mRNA signature was developed to predict overall survival for CRC patients. Concordance indexes were 0.817, 0.838, and 0.825 for 1-, 2- and 3-year overall survival. Patients with high risk scores have worse OS compared with patients with low risk scores.ConclusionThe current study provided deeper understanding of prognosis-related ceRNA regulatory network for CRC. Two precision medicine predictive tools named Smart Cancer Survival Predictive System and Gene Survival Analysis Screen System were constructed for CRC. These two precision medicine predictive tools can provide valuable precious individual mortality risk prediction before surgery and improve the individualized treatment decision-making.
BackgroundColorectal cancer remains a serious public health problem due to the poor prognosis. In the present study, we attempted to develop and validate a prognostic signature to predict the individual mortality risk in colorectal cancer patients.Materials and MethodsThe original study datasets were downloaded from The Cancer Genome Atlas database. The present study finally included 424 colorectal cancer patients with wholly gene expression information and overall survival information.ResultsA nine-lncRNA prognostic signature was built through univariate and multivariate Cox proportional regression model. Time-dependent receiver operating characteristic curves in model cohort demonstrated that the Harrell’s concordance indexes of nine-lncRNA prognostic signature were 0.768 (95% CI [0.717–0.819]), 0.778 (95% CI [0.727–0.829]) and 0.870 (95% CI [0.819–0.921]) for 1-year, 3-year and 5-year overall survival respectively. In validation cohort, the Harrell’s concordance indexes of nine-lncRNA prognostic signature were 0.761 (95% CI [0.710–0.812]), 0.801 (95% CI [0.750–0.852]) and 0.883 (95% CI [0.832–0.934]) for 1-year, 3-year and 5-year overall survival respectively. According to the median of nine-lncRNA prognostic signature score in model cohort, 424 CRC patients could be stratified into high risk group (n = 212) and low risk group (n = 212). Kaplan–Meier survival curves showed that the overall survival rate of high risk group was significantly lower than that of low risk group (P < 0.001).DiscussionThe present study developed and validated a nine-lncRNA prognostic signature for individual mortality risk assessment in colorectal cancer patients. This nine-lncRNA prognostic signature is helpful to evaluate the individual mortality risk and to improve the decision making of individualized treatments in colorectal cancer patients.
BackgroundHepatocellular carcinoma (HCC) is a serious threat to public health due to its poor prognosis. The current study aimed to develop and validate a prognostic nomogram to predict the overall survival of HCC patients.MethodsThe model cohort consisted of 24,991 mRNA expression data points from 348 HCC patients. The least absolute shrinkage and selection operator method (LASSO) Cox regression model was used to evaluate the prognostic mRNA biomarkers for the overall survival of HCC patients.ResultsUsing multivariate Cox proportional regression analyses, a prognostic nomogram (named Eight-mRNA prognostic nomogram) was constructed based on the expression data of N4BP3, -ADRA2B, E2F8, MAPT, PZP, HOXD9, COL15A1, and -NDST3. The C-index of the Eight-mRNA prognostic nomogram was 0.765 (95% CI 0.724–0.806) for the overall survival in the model cohort. The Harrell’s concordance-index of the Eight-mRNA prognostic nomogram was 0.715 (95% CI 0.658–0.772) in the validation cohort. The survival curves demonstrated that the HCC patients in the high risk group had a significantly poorer overall survival than the patients in the low risk group.ConclusionIn the current study, we have developed two convenient and efficient predictive precision medicine tools for hepatocellular carcinoma. These two predictive precision medicine tools are helpful for predicting the individual mortality risk probability and improving the personalized comprehensive treatments for HCC patients. The Smart Cancer Predictive System can be used by clicking the following URL: https://zhangzhiqiao2.shinyapps.io/Smart_cancer_predictive_system_HCC_2/. The Gene Survival Analysis Screen System is available at the following URL: https://zhangzhiqiao5.shinyapps.io/Gene_Survival_Analysis_A1001/.
Supplemental Digital Content is available in the text
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers