For the past half century, the sliding filament-based cross-bridge theory has been the cornerstone of our understanding of how muscles contract. According to this theory, active force can only occur if there is overlap between the contractile filaments, actin and myosin. Otherwise, forces are thought to be caused by passive structural elements and are assumed to vary solely because of the length of the muscle. We observed increases in muscle force by a factor of 3 to 4 above the purely passive forces for activated and stretched myofibrils in the absence of actin-myosin overlap. We show that this dramatic increase in force is crucially dependent on the presence of the structural protein titin, cannot be explained with calcium activation, and is regulated by actin-myosin-based cross-bridge forces before stretching. We conclude from these observations that titin is a strong regulator of muscle force and propose that this regulation is based on cross-bridge force-dependent titin-actin interactions. These results suggest a mechanism for stability of sarcomeres on the "inherently unstable" descending limb of the force-length relationship, and they further provide an explanation for the protection of muscles against stretch-induced muscle injuries.
Residual force enhancement has been observed following active stretch of skeletal muscles and single fibres. However, there has been intense debate whether force enhancement is a sarcomeric property, or is associated with sarcomere length instability and the associated development of non-uniformities. Here, we studied force enhancement for the first time in isolated myofibrils (nZ18) that, owing to the strict in series arrangement, allowed for evaluation of this property in individual sarcomeres (nZ79). We found consistent force enhancement following stretch in all myofibrils and each sarcomere, and forces in the enhanced state typically exceeded the isometric forces on the plateau of the force-length relationship. Measurements were made on the plateau and the descending limb of the force-length relationship and revealed gross sarcomere length non-uniformities prior to and following active myofibril stretching, but in contrast to previous accounts, revealed that sarcomere lengths were perfectly stable under these experimental conditions. We conclude that force enhancement is a sarcomeric property that does not depend on sarcomere length instability, that force enhancement varies greatly for different sarcomeres within the same myofibril and that sarcomeres with vastly different amounts of actin-myosin overlap produce the same isometric steady-state forces. This last finding was not explained by differences in the amount of contractile proteins within sarcomeres, vastly different passive properties of individual sarcomeres or (half-) sarcomere length instabilities, suggesting that the basic mechanical properties of muscles, such as force enhancement, force depression and creep, which have traditionally been associated with sarcomere instabilities and the corresponding dynamic redistribution of sarcomere lengths, are not caused by such instabilities, but rather seem to be inherent properties of the mechanisms of contraction.
Sarcomerogenesis, or the addition of sarcomeres in series within a fiber, has a profound impact on the performance of a muscle by increasing its contractile velocity and power. Sarcomerogenesis may provide a beneficial adaptation to prevent injury when a muscle consistently works at long lengths, accounting for the repeated-bout effect. The association between eccentric exercise, sarcomerogenesis and the repeated-bout effect has been proposed to depend on damage, where regeneration allows sarcomeres to work at shorter lengths for a given muscle-tendon unit length. To gain additional insight into this phenomenon, we measured fiber dynamics directly in the vastus lateralis (VL) muscle of rats during uphill and downhill walking, and we measured serial sarcomere number in the VL and vastus intermedius (VI) after chronic training on either a decline or incline grade. We found that the knee extensor muscles of uphill walking rats undergo repeated active concentric contractions, and therefore they suffer no contraction-induced injury. Conversely, the knee extensor muscles during downhill walking undergo repeated active eccentric contractions. Serial sarcomere numbers change differently for the uphill and downhill exercise groups, and for the VL and VI muscles. Short muscle lengths for uphill concentric-biased contractions result in a loss of serial sarcomeres, and long muscle lengths for downhill eccentric-biased contractions result in a gain of serial sarcomeres.
The sliding filament theory of muscle contraction is widely accepted as the means by which muscles generate force during activation. Within the constraints of this theory, isometric, steady-state force produced during muscle activation is proportional to the amount of filament overlap. Previous studies from our laboratory demonstrated enhanced titin-based force in myofibrils that were actively stretched to lengths which exceeded filament overlap. This observation cannot be explained by the sliding filament theory. The aim of the present study was to further investigate the enhanced state of titin during active stretch. Specifically, we confirm that this enhanced state of force is observed in a mouse model and quantify the contribution of calcium to this force. Titin-based force was increased by up to four times that of passive force during active stretch of isolated myofibrils. Enhanced titin-based force has now been demonstrated in two distinct animal models, suggesting that modulation of titin-based force during active stretch is an inherent property of skeletal muscle. Our results also demonstrated that 15% of the enhanced state of titin can be attributed to direct calcium effects on the protein, presumably a stiffening of the protein upon calcium binding to the E-rich region of the PEVK segment and selected Ig domain segments. We suggest that the remaining unexplained 85% of this extra force results from titin binding to the thin filament. With this enhanced force confirmed in the mouse model, future studies will aim to elucidate the proposed titin-thin filament interaction in actively stretched sarcomeres.
The aim of the present study was to test whether titin is a calcium-dependent spring and whether it is the source of the passive force enhancement observed in muscle and single fiber preparations. We measured passive force enhancement in troponin C (TnC)-depleted myofibrils in which active force production was completely eliminated. The TnC-depleted construct allowed for the investigation of the effect of calcium concentration on passive force, without the confounding effects of actin-myosin cross-bridge formation and active force production. Passive forces in TnC-depleted myofibrils ( n = 6) were 35.0 ± 2.9 nN/ μm2 when stretched to an average sarcomere length of 3.4 μm in a solution with low calcium concentration (pCa 8.0). Passive forces in the same myofibrils increased by 25% to 30% when stretches were performed in a solution with high calcium concentration (pCa 3.5). Since it is well accepted that titin is the primary source for passive force in rabbit psoas myofibrils and since the increase in passive force in TnC-depleted myofibrils was abolished after trypsin treatment, our results suggest that increasing calcium concentration is associated with increased titin stiffness. However, this calcium-induced titin stiffness accounted for only ∼25% of the passive force enhancement observed in intact myofibrils. Therefore, ∼75% of the normally occurring passive force enhancement remains unexplained. The findings of the present study suggest that passive force enhancement is partly caused by a calcium-induced increase in titin stiffness but also requires cross-bridge formation and/or active force production for full manifestation.
It has been accepted for half a century that, for a given level of activation, the steady-state isometric force of a muscle sarcomere depends exclusively on the amount of overlap between the contractile filaments actin and myosin, or equivalently sarcomere length (Gordon AM et al., J Physiol 184: 170 -192, 1966). Moreover, according to the generally accepted paradigm of muscle contraction, the cross-bridge theory (Huxley AF, Prog Biophys Biophys Chem 7: 255-318, 1957), this steady-state isometric sarcomere force is independent of the muscle's contractile history (Huxley AF, Prog Biophys Biophys Chem 7: 255-318, 1957; Walcott S and Herzog W, Math Biosci 216: 172-186, 2008); i.e., it is independent of whether a muscle is held at a constant length before and during the contraction or whether the muscle is shortened or lengthened to the same constant length. This, however, is not the case, as muscles and single fibers that are stretched show greatly increased steady-state isometric forces compared with preparations that are held at a constant length (Abbott BC and Aubert XM,
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers