The tumor microenvironment is created by the tumor and dominated by tumor-induced interactions. Although various immune effector cells are recruited to the tumor site, their anti-tumor functions are downregulated, largely in response to tumor-derived signals. Infiltrates of inflammatory cells present in human tumors are chronic in nature and are enriched in regulatory T cells (Treg) as well as myeloid suppressor cells (MSC). Immune cells in the tumor microenvironment not only fail to exercise anti-tumor effector functions, but they are co-opted to promote tumor growth. Sustained activation of the NF-κB pathway in the tumor milieu represents one mechanism that appears to favor tumor survival and drive abortive activation of immune cells. The result is tumor escape from the host immune system. Tumor escape is accomplished through the activation of one or several molecular mechanisms that lead to inhibition of immune cell functions or to apoptosis of anti-tumor effector cells. The ability to block tumor escape depends on a better understanding of cellular and molecular pathways operating in the tumor microenvironment. Novel therapeutic strategies that emerge are designed to change the pro-tumor microenvironment to one favoring acute responses and potent anti-tumor activity.
Tumor cells actively produce, release and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon the contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as non-invasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation.
Purpose A phase I/II trial was performed to evaluate the safety and immunogenicity of a novel vaccination with α-type 1 polarized dendritic cells (αDC1) loaded with synthetic peptides for glioma-associated antigen (GAA) epitopes and administration of polyinosinic-polycytidylic acid [poly(I:C)] stabilized by lysine and carboxymethylcellulose (poly-ICLC) in HLA-A2+ patients with recurrent malignant gliomas. GAAs for these peptides are EphA2, interleukin (IL)-13 receptor-α2, YKL-40, and gp100. Patients and Methods Twenty-two patients (13 with glioblastoma multiforme [GBM], five with anaplastic astrocytoma [AA], three with anaplastic oligodendroglioma [AO], and one with anaplastic oligoastrocytoma [AOA]) received at least one vaccination, and 19 patients received at least four vaccinations at two αDC1 dose levels (1 × or 3 × 107/dose) at 2-week intervals intranodally. Patients also received twice weekly intramuscular injections of 20 μg/kg poly-ICLC. Patients who demonstrated positive radiologic response or stable disease without major adverse events were allowed to receive booster vaccines. T-lymphocyte responses against GAA epitopes were assessed by enzyme-linked immunosorbent spot and HLA-tetramer assays. Results The regimen was well-tolerated. The first four vaccines induced positive immune responses against at least one of the vaccination-targeted GAAs in peripheral blood mononuclear cells in 58% of patients. Peripheral blood samples demonstrated significant upregulation of type 1 cytokines and chemokines, including interferon-α and CXCL10. Nine (four GBM, two AA, two AO, and one AOA) achieved progression-free status lasting at least 12 months. One patient with recurrent GBM demonstrated sustained complete response. IL-12 production levels by αDC1 positively correlated with time to progression. Conclusion These data support safety, immunogenicity, and preliminary clinical activity of poly-ICLC-boosted αDC1-based vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.