COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was recognized by the World Health Organization (WHO) as a pandemic in 2020. Host preparation to combat the virus is an important strategy to avoid COVID-19 severity. Thus, the relationship between eating habits, nutritional status, and their effects on the immune response and further implications in viral respiratory infections are important topics discussed in this revision. Malnutrition causes the most diverse alterations in the immune system, suppressing of the immune response and increasing the susceptibility to infections as SARS-CoV-2. On the other hand, obesity induces low-grade chronic inflammation caused by excess adiposity, which increases angiotensin-converting enzyme 2 (ACE2). It decreases the immune response favoring SARS-CoV-2 virulence and promoting respiratory distress syndrome. The present review highlights the importance of food choices considering their inflammatory effects, consequently increasing the viral susceptibility observed in malnutrition and obesity. Healthy eating habits, micronutrients, bioactive compounds, and probiotics are strategies for COVID-19 prevention. Therefore, a diversified and balanced diet can contribute to the improvement of the immune response to viral infections such as COVID-19.
Infection caused by the SARS-CoV-2 coronavirus worldwide has led the World Health Organization to declare a COVID-19 pandemic. Because there is no cure or treatment for this virus, it is emergingly urgent to find effective and validated methods to prevent and treat COVID-19 infection. In this context, alternatives related to nutritional therapy might help to control the infection. This narrative review proposes the importance and role of probiotics and diet as adjunct alternatives among the therapies available for the treatment of this new coronavirus. This review discusses the relationship between intestinal purine metabolism and the use of Lactobacillus gasseri and low-purine diets, particularly in individuals with hyperuricemia, as adjuvant nutritional therapies to improve the immune system and weaken viral replication, assisting in the treatment of COVID-19. These might be promising alternatives, in addition to many others that involve adequate intake of vitamins, minerals and bioactive compounds from food.
In vivo studies show the benefits of the trypsin inhibitor isolated from tamarind (Tamarindusindica L.) (TTI) seeds in satiety and obesity. In the present study, TTI nanoencapsulation (ECW) was performed to potentialize the effect of TTI and allow a controlled release in the stomach. The impact on glycemia, insulin, and lipid profile was evaluated in Wistar rats overfed with a high glycemic index diet (HGLI). Characterization of the nanoparticles and in vitro stability in simulated gastrointestinal conditions, monitored by antitrypsin activity and HPLC, was performed. ECW and empty nanoparticles (CW) were administered by gavage, using 12.5 and 10.0 mg/kg, respectively. Both nanoformulations presented a spherical shape and smooth surface, with an average diameter of 117.4 nm (24.1) for ECW and 123.9 nm (11.3) for CW. ECW maintained the antitrypsin activity (95.5%) in the gastric phase, while TTI was completely hydrolyzed. In Wistar rats, the nanoformulations significantly reduced glycemia and HOMA IR, and ECW increased HDL-c compared to CW (p < 0.05).Pancreas histopathology of animals treated with ECW suggested an onset of tissue repair. Thenanoencapsulation provided TTI protection, gradual release in the desired condition, and improvement of biochemical parameters related to carbohydrate metabolism disorders,without compromising insulinemia.
The global COVID-19 pandemic has become a complex problem that overlaps with a growing public health problem, obesity. Obesity alters different components of the innate and adaptive immune responses, creating a chronic and low-grade state of inflammation. Nutritional status is closely related to a better or worse prognosis of viral infections. Excess weight was recognized as a risk factor for COVID-19 complications. In addition to the direct risk, obesity triggers other diseases such as diabetes and hypertension, increasing the risk of severe COVID-19. This review explains the diets that induce obesity and the importance of different foods in this process. We also review tissue disruption in obesity, leading to impaired immune responses and the possible mechanisms by which obesity and its comorbidities increase COVID-19 morbidity and mortality. Nutritional strategies that support the immune system in patients with obesity and with COVID-19 are also discussed in light of the available data, considering the severity of the infection. The discussions held may contribute to combating this global emergency and planning specific public health policy.
Significant trends towards lower refractive power, increased prevalence of myopia, increased ACD, VCD, and axial length, and decreased lens power were associated with increasing age in these children. There were no significant changes in corneal thickness or corneal curvature.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.